基于更快R-CNN和NASNet的水下数字图像海草检测

Md Kislu Noman, S. Islam, Jumana Abu-Khalaf, P. Lavery
{"title":"基于更快R-CNN和NASNet的水下数字图像海草检测","authors":"Md Kislu Noman, S. Islam, Jumana Abu-Khalaf, P. Lavery","doi":"10.1109/DICTA52665.2021.9647325","DOIUrl":null,"url":null,"abstract":"In recent years, it has been demonstrated that deep learning has great success in a variety of computer vision applications. Deep learning-based Faster R-CNN algorithm depends on region proposal network that provides state-of-the-art object detection performance. To date, a limited number of Faster R-CNN approaches have been attempted to detect seagrass from underwater digital images. This paper proposes an improved seagrass detector that enhances the detection performance by combining the Faster R-CNN framework with the NASNet-A backbone. This seagrass detector achieves a high mean average precision (mAP) of 0.412 on ECUHO-2 dataset, which is significantly better than state-of-the-art Halophila ovalis detection performance on this dataset.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Seagrass Detection from Underwater Digital Images using Faster R-CNN with NASNet\",\"authors\":\"Md Kislu Noman, S. Islam, Jumana Abu-Khalaf, P. Lavery\",\"doi\":\"10.1109/DICTA52665.2021.9647325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, it has been demonstrated that deep learning has great success in a variety of computer vision applications. Deep learning-based Faster R-CNN algorithm depends on region proposal network that provides state-of-the-art object detection performance. To date, a limited number of Faster R-CNN approaches have been attempted to detect seagrass from underwater digital images. This paper proposes an improved seagrass detector that enhances the detection performance by combining the Faster R-CNN framework with the NASNet-A backbone. This seagrass detector achieves a high mean average precision (mAP) of 0.412 on ECUHO-2 dataset, which is significantly better than state-of-the-art Halophila ovalis detection performance on this dataset.\",\"PeriodicalId\":424950,\"journal\":{\"name\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA52665.2021.9647325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

近年来,已经证明深度学习在各种计算机视觉应用中取得了巨大的成功。基于深度学习的Faster R-CNN算法依赖于提供最先进目标检测性能的区域提议网络。迄今为止,已经尝试了有限数量的更快R-CNN方法来从水下数字图像中检测海草。本文提出了一种改进的海草检测器,将Faster R-CNN框架与NASNet-A骨干网相结合,提高了检测性能。该海草探测器在ECUHO-2数据集上的平均精度(mAP)达到0.412,明显优于当前最先进的Halophila ovalis在该数据集上的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Seagrass Detection from Underwater Digital Images using Faster R-CNN with NASNet
In recent years, it has been demonstrated that deep learning has great success in a variety of computer vision applications. Deep learning-based Faster R-CNN algorithm depends on region proposal network that provides state-of-the-art object detection performance. To date, a limited number of Faster R-CNN approaches have been attempted to detect seagrass from underwater digital images. This paper proposes an improved seagrass detector that enhances the detection performance by combining the Faster R-CNN framework with the NASNet-A backbone. This seagrass detector achieves a high mean average precision (mAP) of 0.412 on ECUHO-2 dataset, which is significantly better than state-of-the-art Halophila ovalis detection performance on this dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信