Md Kislu Noman, S. Islam, Jumana Abu-Khalaf, P. Lavery
{"title":"基于更快R-CNN和NASNet的水下数字图像海草检测","authors":"Md Kislu Noman, S. Islam, Jumana Abu-Khalaf, P. Lavery","doi":"10.1109/DICTA52665.2021.9647325","DOIUrl":null,"url":null,"abstract":"In recent years, it has been demonstrated that deep learning has great success in a variety of computer vision applications. Deep learning-based Faster R-CNN algorithm depends on region proposal network that provides state-of-the-art object detection performance. To date, a limited number of Faster R-CNN approaches have been attempted to detect seagrass from underwater digital images. This paper proposes an improved seagrass detector that enhances the detection performance by combining the Faster R-CNN framework with the NASNet-A backbone. This seagrass detector achieves a high mean average precision (mAP) of 0.412 on ECUHO-2 dataset, which is significantly better than state-of-the-art Halophila ovalis detection performance on this dataset.","PeriodicalId":424950,"journal":{"name":"2021 Digital Image Computing: Techniques and Applications (DICTA)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Seagrass Detection from Underwater Digital Images using Faster R-CNN with NASNet\",\"authors\":\"Md Kislu Noman, S. Islam, Jumana Abu-Khalaf, P. Lavery\",\"doi\":\"10.1109/DICTA52665.2021.9647325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, it has been demonstrated that deep learning has great success in a variety of computer vision applications. Deep learning-based Faster R-CNN algorithm depends on region proposal network that provides state-of-the-art object detection performance. To date, a limited number of Faster R-CNN approaches have been attempted to detect seagrass from underwater digital images. This paper proposes an improved seagrass detector that enhances the detection performance by combining the Faster R-CNN framework with the NASNet-A backbone. This seagrass detector achieves a high mean average precision (mAP) of 0.412 on ECUHO-2 dataset, which is significantly better than state-of-the-art Halophila ovalis detection performance on this dataset.\",\"PeriodicalId\":424950,\"journal\":{\"name\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Digital Image Computing: Techniques and Applications (DICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DICTA52665.2021.9647325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Digital Image Computing: Techniques and Applications (DICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA52665.2021.9647325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Seagrass Detection from Underwater Digital Images using Faster R-CNN with NASNet
In recent years, it has been demonstrated that deep learning has great success in a variety of computer vision applications. Deep learning-based Faster R-CNN algorithm depends on region proposal network that provides state-of-the-art object detection performance. To date, a limited number of Faster R-CNN approaches have been attempted to detect seagrass from underwater digital images. This paper proposes an improved seagrass detector that enhances the detection performance by combining the Faster R-CNN framework with the NASNet-A backbone. This seagrass detector achieves a high mean average precision (mAP) of 0.412 on ECUHO-2 dataset, which is significantly better than state-of-the-art Halophila ovalis detection performance on this dataset.