自由和局部自由的动作

L. Tu
{"title":"自由和局部自由的动作","authors":"L. Tu","doi":"10.2307/j.ctvrdf1gz.30","DOIUrl":null,"url":null,"abstract":"This chapter addresses free and locally free actions. It uses the Cartan model to compute the equivariant cohomology of a circle action, so equivariant cohomology is taken with real coefficients. An action is said to be free if the stabilizer of every point consists only of the identity element. It turns out that the equivariant cohomology of a free circle action is always u-torsion. More generally, an action of a topological group G on a topological space X is locally free if the stabilizer Stab(x) of every point is discrete. The chapter then proves that the equivariant cohomology of a locally free circle action on a manifold is also u-torsion.","PeriodicalId":272846,"journal":{"name":"Introductory Lectures on Equivariant Cohomology","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Free and Locally Free Actions\",\"authors\":\"L. Tu\",\"doi\":\"10.2307/j.ctvrdf1gz.30\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This chapter addresses free and locally free actions. It uses the Cartan model to compute the equivariant cohomology of a circle action, so equivariant cohomology is taken with real coefficients. An action is said to be free if the stabilizer of every point consists only of the identity element. It turns out that the equivariant cohomology of a free circle action is always u-torsion. More generally, an action of a topological group G on a topological space X is locally free if the stabilizer Stab(x) of every point is discrete. The chapter then proves that the equivariant cohomology of a locally free circle action on a manifold is also u-torsion.\",\"PeriodicalId\":272846,\"journal\":{\"name\":\"Introductory Lectures on Equivariant Cohomology\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Introductory Lectures on Equivariant Cohomology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2307/j.ctvrdf1gz.30\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Introductory Lectures on Equivariant Cohomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2307/j.ctvrdf1gz.30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章讨论自由和局部自由操作。利用Cartan模型计算圆作用的等变上同调,取实系数的等变上同调。如果每个点的稳定器仅由单位元组成,则称一个作用是自由的。结果表明,自由圆作用的等变上同调总是u-扭转。更一般地说,拓扑群G在拓扑空间X上的作用是局部自由的,如果每个点的稳定器Stab(X)是离散的。然后证明了流形上局部自由圆作用的等变上同调也是u-扭转。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Free and Locally Free Actions
This chapter addresses free and locally free actions. It uses the Cartan model to compute the equivariant cohomology of a circle action, so equivariant cohomology is taken with real coefficients. An action is said to be free if the stabilizer of every point consists only of the identity element. It turns out that the equivariant cohomology of a free circle action is always u-torsion. More generally, an action of a topological group G on a topological space X is locally free if the stabilizer Stab(x) of every point is discrete. The chapter then proves that the equivariant cohomology of a locally free circle action on a manifold is also u-torsion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信