6年后你的工作量会是怎样的?分析维基媒体的工作量

A. Ali-Eldin, A. Rezaie, Amardeep Mehta, Stanislav Razroev, S. S. Luna, O. Seleznjev, Johan Tordsson, E. Elmroth
{"title":"6年后你的工作量会是怎样的?分析维基媒体的工作量","authors":"A. Ali-Eldin, A. Rezaie, Amardeep Mehta, Stanislav Razroev, S. S. Luna, O. Seleznjev, Johan Tordsson, E. Elmroth","doi":"10.1109/IC2E.2014.50","DOIUrl":null,"url":null,"abstract":"Accurate understanding of workloads is key to efficient cloud resource management as well as to the design of large-scale applications. We analyze and model the workload of Wikipedia, one of the world's largest web sites. With descriptive statistics, time-series analysis, and polynomial splines, we study the trend and seasonality of the workload, its evolution over the years, and also investigate patterns in page popularity. Our results indicate that the workload is highly predictable with a strong seasonality. Our short term prediction algorithm is able to predict the workload with a Mean Absolute Percentage Error of around 2%.","PeriodicalId":273902,"journal":{"name":"2014 IEEE International Conference on Cloud Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"How will Your Workload Look Like in 6 Years? Analyzing Wikimedia's Workload\",\"authors\":\"A. Ali-Eldin, A. Rezaie, Amardeep Mehta, Stanislav Razroev, S. S. Luna, O. Seleznjev, Johan Tordsson, E. Elmroth\",\"doi\":\"10.1109/IC2E.2014.50\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate understanding of workloads is key to efficient cloud resource management as well as to the design of large-scale applications. We analyze and model the workload of Wikipedia, one of the world's largest web sites. With descriptive statistics, time-series analysis, and polynomial splines, we study the trend and seasonality of the workload, its evolution over the years, and also investigate patterns in page popularity. Our results indicate that the workload is highly predictable with a strong seasonality. Our short term prediction algorithm is able to predict the workload with a Mean Absolute Percentage Error of around 2%.\",\"PeriodicalId\":273902,\"journal\":{\"name\":\"2014 IEEE International Conference on Cloud Engineering\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Conference on Cloud Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC2E.2014.50\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Cloud Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC2E.2014.50","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

准确理解工作负载是高效云资源管理和大规模应用程序设计的关键。我们对世界上最大的网站之一维基百科的工作量进行分析和建模。通过描述性统计、时间序列分析和多项式样条,我们研究了工作负载的趋势和季节性,以及多年来的演变,还研究了页面流行度的模式。我们的研究结果表明,工作量是高度可预测的,具有很强的季节性。我们的短期预测算法能够以2%左右的平均绝对百分比误差预测工作负载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
How will Your Workload Look Like in 6 Years? Analyzing Wikimedia's Workload
Accurate understanding of workloads is key to efficient cloud resource management as well as to the design of large-scale applications. We analyze and model the workload of Wikipedia, one of the world's largest web sites. With descriptive statistics, time-series analysis, and polynomial splines, we study the trend and seasonality of the workload, its evolution over the years, and also investigate patterns in page popularity. Our results indicate that the workload is highly predictable with a strong seasonality. Our short term prediction algorithm is able to predict the workload with a Mean Absolute Percentage Error of around 2%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信