模糊神经计算:一些进展

M. Gupta
{"title":"模糊神经计算:一些进展","authors":"M. Gupta","doi":"10.1109/ICIT.2000.854113","DOIUrl":null,"url":null,"abstract":"In this paper we give some basic principles of fuzzy neural computing using synaptic and somatic operations. We first briefly review the neural systems based upon the conventional algebraic synaptic (confluence) and somatic (aggregation) operations. Then we provide a detailed neuronal morphology based upon fuzzy logic and its generalization in the form of T-operators. For such fuzzy logic based neurons, we then develop the learning and adaptation algorithm.","PeriodicalId":405648,"journal":{"name":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","volume":"105 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy-neural computing: some advances\",\"authors\":\"M. Gupta\",\"doi\":\"10.1109/ICIT.2000.854113\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we give some basic principles of fuzzy neural computing using synaptic and somatic operations. We first briefly review the neural systems based upon the conventional algebraic synaptic (confluence) and somatic (aggregation) operations. Then we provide a detailed neuronal morphology based upon fuzzy logic and its generalization in the form of T-operators. For such fuzzy logic based neurons, we then develop the learning and adaptation algorithm.\",\"PeriodicalId\":405648,\"journal\":{\"name\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"volume\":\"105 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIT.2000.854113\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of IEEE International Conference on Industrial Technology 2000 (IEEE Cat. No.00TH8482)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIT.2000.854113","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了利用突触运算和躯体运算进行模糊神经计算的一些基本原理。我们首先简要回顾基于传统代数突触(合流)和体细胞(聚集)操作的神经系统。然后给出了一种基于模糊逻辑的神经元形态及其以t算子形式的推广。对于这种基于模糊逻辑的神经元,我们开发了学习和自适应算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy-neural computing: some advances
In this paper we give some basic principles of fuzzy neural computing using synaptic and somatic operations. We first briefly review the neural systems based upon the conventional algebraic synaptic (confluence) and somatic (aggregation) operations. Then we provide a detailed neuronal morphology based upon fuzzy logic and its generalization in the form of T-operators. For such fuzzy logic based neurons, we then develop the learning and adaptation algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信