利用临床数据和非对比CT预测心栓塞性卒中的风险

Pasit Jakkrawankul, C. Chunharas, Wasan Akarathanawat, P. Vorasayan, Sedthapong Chunamchai, Ploy N. Pratanwanich, P. Punyabukkana, E. Chuangsuwanich
{"title":"利用临床数据和非对比CT预测心栓塞性卒中的风险","authors":"Pasit Jakkrawankul, C. Chunharas, Wasan Akarathanawat, P. Vorasayan, Sedthapong Chunamchai, Ploy N. Pratanwanich, P. Punyabukkana, E. Chuangsuwanich","doi":"10.1109/SSP53291.2023.10207950","DOIUrl":null,"url":null,"abstract":"Cardioembolic stroke is a dangerous subtype of ischemic stroke. Patients with this subtype need special treatments to prevent recurrent events that might be fatal. Thus, identifying underlying stroke categories between cardioembolic and non-cardioembolic subtypes is of great importance. We propose a multimodal machine learning model that takes into account basic clinical information and non-contrast computed tomography (CT) images to predict the risk of cardioembolic stroke. The clinical information is not only used to provide additional information for the classification model but also to guide the attention module to extract better image features. Our model achieves a score of 0.840 using the area under the receiver operating characteristic curve (ROC-AUC) metric. Besides the capability to classify the stroke subtypes, the method can provide a heatmap for large infarct localization, which is crucial for stroke diagnosis.","PeriodicalId":296346,"journal":{"name":"2023 IEEE Statistical Signal Processing Workshop (SSP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Risk Prediction of Cardioembolic Stroke using Clinical Data and Non-contrast CT\",\"authors\":\"Pasit Jakkrawankul, C. Chunharas, Wasan Akarathanawat, P. Vorasayan, Sedthapong Chunamchai, Ploy N. Pratanwanich, P. Punyabukkana, E. Chuangsuwanich\",\"doi\":\"10.1109/SSP53291.2023.10207950\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cardioembolic stroke is a dangerous subtype of ischemic stroke. Patients with this subtype need special treatments to prevent recurrent events that might be fatal. Thus, identifying underlying stroke categories between cardioembolic and non-cardioembolic subtypes is of great importance. We propose a multimodal machine learning model that takes into account basic clinical information and non-contrast computed tomography (CT) images to predict the risk of cardioembolic stroke. The clinical information is not only used to provide additional information for the classification model but also to guide the attention module to extract better image features. Our model achieves a score of 0.840 using the area under the receiver operating characteristic curve (ROC-AUC) metric. Besides the capability to classify the stroke subtypes, the method can provide a heatmap for large infarct localization, which is crucial for stroke diagnosis.\",\"PeriodicalId\":296346,\"journal\":{\"name\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"4 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP53291.2023.10207950\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP53291.2023.10207950","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

心源性中风是缺血性中风的一种危险亚型。这种亚型的患者需要特殊治疗,以防止可能致命的复发事件。因此,在心源性和非心源性亚型之间识别潜在的卒中类别是非常重要的。我们提出了一种多模态机器学习模型,该模型考虑了基本临床信息和非对比计算机断层扫描(CT)图像来预测心脏栓塞性中风的风险。临床信息不仅可以为分类模型提供额外的信息,还可以指导注意模块提取更好的图像特征。我们的模型使用接收者工作特征曲线(ROC-AUC)度量下的面积达到0.840分。除了能够对脑卒中亚型进行分类外,该方法还可以提供大梗死灶定位的热图,这对脑卒中诊断至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Risk Prediction of Cardioembolic Stroke using Clinical Data and Non-contrast CT
Cardioembolic stroke is a dangerous subtype of ischemic stroke. Patients with this subtype need special treatments to prevent recurrent events that might be fatal. Thus, identifying underlying stroke categories between cardioembolic and non-cardioembolic subtypes is of great importance. We propose a multimodal machine learning model that takes into account basic clinical information and non-contrast computed tomography (CT) images to predict the risk of cardioembolic stroke. The clinical information is not only used to provide additional information for the classification model but also to guide the attention module to extract better image features. Our model achieves a score of 0.840 using the area under the receiver operating characteristic curve (ROC-AUC) metric. Besides the capability to classify the stroke subtypes, the method can provide a heatmap for large infarct localization, which is crucial for stroke diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信