GPU加速聚合AMG的步骤

M. Emans, M. Liebmann, B. Basara
{"title":"GPU加速聚合AMG的步骤","authors":"M. Emans, M. Liebmann, B. Basara","doi":"10.1109/ISPDC.2012.19","DOIUrl":null,"url":null,"abstract":"We present an implementation of AMG with simple aggregation techniques on multiple GPUs. It supports the parallel matrix representations typically used for finite volume discretisation. We employ the ICRS sparse matrix format and the asynchronous exchange mechanism of MPI on CPUs that has been modified to make it suitable for the GPU coprocessors. We show that the solution phase of the standard v-cycle AMG with simple aggregation is accelerated by a factor of up to 12. The solution phase of the more advanced Krylov-accelerated AMG runs faster by a factor of up to 7 on Nvidia TESLA C2070 compared to calculation on Intel X5650 CPUs.","PeriodicalId":287900,"journal":{"name":"2012 11th International Symposium on Parallel and Distributed Computing","volume":"69 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Steps towards GPU Accelerated Aggregation AMG\",\"authors\":\"M. Emans, M. Liebmann, B. Basara\",\"doi\":\"10.1109/ISPDC.2012.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present an implementation of AMG with simple aggregation techniques on multiple GPUs. It supports the parallel matrix representations typically used for finite volume discretisation. We employ the ICRS sparse matrix format and the asynchronous exchange mechanism of MPI on CPUs that has been modified to make it suitable for the GPU coprocessors. We show that the solution phase of the standard v-cycle AMG with simple aggregation is accelerated by a factor of up to 12. The solution phase of the more advanced Krylov-accelerated AMG runs faster by a factor of up to 7 on Nvidia TESLA C2070 compared to calculation on Intel X5650 CPUs.\",\"PeriodicalId\":287900,\"journal\":{\"name\":\"2012 11th International Symposium on Parallel and Distributed Computing\",\"volume\":\"69 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 11th International Symposium on Parallel and Distributed Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPDC.2012.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 11th International Symposium on Parallel and Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPDC.2012.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们提出了一种在多个gpu上使用简单聚合技术实现AMG的方法。它支持通常用于有限体积离散的并行矩阵表示。我们采用了ICRS稀疏矩阵格式和MPI在cpu上的异步交换机制,并对其进行了修改,使其适合GPU协处理器。我们证明了具有简单聚集的标准v循环AMG的溶液相被加速了高达12倍。更先进的krylov加速AMG的解决方案阶段在Nvidia TESLA C2070上的运行速度比在Intel X5650 cpu上的计算速度快了7倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Steps towards GPU Accelerated Aggregation AMG
We present an implementation of AMG with simple aggregation techniques on multiple GPUs. It supports the parallel matrix representations typically used for finite volume discretisation. We employ the ICRS sparse matrix format and the asynchronous exchange mechanism of MPI on CPUs that has been modified to make it suitable for the GPU coprocessors. We show that the solution phase of the standard v-cycle AMG with simple aggregation is accelerated by a factor of up to 12. The solution phase of the more advanced Krylov-accelerated AMG runs faster by a factor of up to 7 on Nvidia TESLA C2070 compared to calculation on Intel X5650 CPUs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信