基于内容的图像检索中的队列选择:vfM案例研究

Mayank Agarwal, Javed Mostafa
{"title":"基于内容的图像检索中的队列选择:vfM案例研究","authors":"Mayank Agarwal, Javed Mostafa","doi":"10.1109/HISB.2012.42","DOIUrl":null,"url":null,"abstract":"In this paper, we propose ViewFinder Medicine (vfM) for automatically identifying cohort classes for MRI scans. It involves predicting a cohort class for the heretofore unseen patient (and related images) and offering linkages to historical diagnosis data associated with the members of the predicted cohort class. The basic idea is to offer a relatively accurate cohort class for a new patient so that the cohort can be used as a baseline to understand current patient's status and develop a treatment plan.","PeriodicalId":375089,"journal":{"name":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cohort Selection through Content-Based Image Retrieval: vfM A Case Study\",\"authors\":\"Mayank Agarwal, Javed Mostafa\",\"doi\":\"10.1109/HISB.2012.42\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose ViewFinder Medicine (vfM) for automatically identifying cohort classes for MRI scans. It involves predicting a cohort class for the heretofore unseen patient (and related images) and offering linkages to historical diagnosis data associated with the members of the predicted cohort class. The basic idea is to offer a relatively accurate cohort class for a new patient so that the cohort can be used as a baseline to understand current patient's status and develop a treatment plan.\",\"PeriodicalId\":375089,\"journal\":{\"name\":\"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HISB.2012.42\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Second International Conference on Healthcare Informatics, Imaging and Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HISB.2012.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了ViewFinder Medicine (vfM)来自动识别MRI扫描的队列类别。它包括预测迄今为止未见过的患者(和相关图像)的队列类别,并提供与预测队列类别成员相关的历史诊断数据的链接。其基本思路是为新患者提供一个相对准确的队列分类,以便该队列可以作为了解当前患者状态和制定治疗计划的基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cohort Selection through Content-Based Image Retrieval: vfM A Case Study
In this paper, we propose ViewFinder Medicine (vfM) for automatically identifying cohort classes for MRI scans. It involves predicting a cohort class for the heretofore unseen patient (and related images) and offering linkages to historical diagnosis data associated with the members of the predicted cohort class. The basic idea is to offer a relatively accurate cohort class for a new patient so that the cohort can be used as a baseline to understand current patient's status and develop a treatment plan.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信