基于运动图像的脑机接口域自适应与源选择

Eunjin Jeon, Wonjun Ko, Heung-Il Suk
{"title":"基于运动图像的脑机接口域自适应与源选择","authors":"Eunjin Jeon, Wonjun Ko, Heung-Il Suk","doi":"10.1109/IWW-BCI.2019.8737340","DOIUrl":null,"url":null,"abstract":"Recent successes of deep learning methods in various applications have inspired BCI researchers for their use in EEG classification. However, data insufficiency and high intra- and inter-subject variabilities hinder from taking their advantage of discovering complex patterns inherent in data, which can be potentially useful to enhance EEG classification accuracy. In this paper, we devise a novel framework of training a deep network by adapting samples of other subjects as a means of domain adaptation. Assuming that there are EEG trials of motor-imagery tasks from multiple subjects available, we first select a subject whose EEG signal characteristics are similar to the target subject based on their power spectral density in resting-state EEG signals. We then use EEG signals of both the selected subject (called a source subject) and the target subject jointly in training a deep network. Rather than training a single path network, we adopt a multi-path network architecture, where the shared bottom layers are used to discover common features for both source and target subjects, while the upper layers branch out into (1) source-target subject identification, (2) label prediction optimized for a source subject, and (3) label prediction optimized for a target subject. Based on our experimental results over the BCI Competition IV-IIa dataset, we validated the effectiveness of the proposed framework in various aspects.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Domain Adaptation with Source Selection for Motor-Imagery based BCI\",\"authors\":\"Eunjin Jeon, Wonjun Ko, Heung-Il Suk\",\"doi\":\"10.1109/IWW-BCI.2019.8737340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent successes of deep learning methods in various applications have inspired BCI researchers for their use in EEG classification. However, data insufficiency and high intra- and inter-subject variabilities hinder from taking their advantage of discovering complex patterns inherent in data, which can be potentially useful to enhance EEG classification accuracy. In this paper, we devise a novel framework of training a deep network by adapting samples of other subjects as a means of domain adaptation. Assuming that there are EEG trials of motor-imagery tasks from multiple subjects available, we first select a subject whose EEG signal characteristics are similar to the target subject based on their power spectral density in resting-state EEG signals. We then use EEG signals of both the selected subject (called a source subject) and the target subject jointly in training a deep network. Rather than training a single path network, we adopt a multi-path network architecture, where the shared bottom layers are used to discover common features for both source and target subjects, while the upper layers branch out into (1) source-target subject identification, (2) label prediction optimized for a source subject, and (3) label prediction optimized for a target subject. Based on our experimental results over the BCI Competition IV-IIa dataset, we validated the effectiveness of the proposed framework in various aspects.\",\"PeriodicalId\":345970,\"journal\":{\"name\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2019.8737340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

最近深度学习方法在各种应用中的成功启发了脑机接口研究人员将其用于脑电图分类。然而,数据不足和主体内、主体间的高度可变性阻碍了它们发现数据中固有的复杂模式的优势,这可能有助于提高脑电分类的准确性。在本文中,我们设计了一种新的框架,通过适应其他主题的样本作为域适应的手段来训练深度网络。假设存在多个被试的运动-想象任务脑电试验,我们首先根据其静息状态脑电信号的功率谱密度选择一个与目标被试脑电信号特征相似的被试。然后我们使用被选对象(称为源对象)和目标对象的脑电图信号共同训练一个深度网络。我们不是训练单路径网络,而是采用多路径网络架构,其中共享的底层用于发现源和目标主题的共同特征,而上层则分为(1)源-目标主题识别,(2)针对源主题优化的标签预测,(3)针对目标主题优化的标签预测。基于我们在BCI Competition IV-IIa数据集上的实验结果,我们从各个方面验证了所提出框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain Adaptation with Source Selection for Motor-Imagery based BCI
Recent successes of deep learning methods in various applications have inspired BCI researchers for their use in EEG classification. However, data insufficiency and high intra- and inter-subject variabilities hinder from taking their advantage of discovering complex patterns inherent in data, which can be potentially useful to enhance EEG classification accuracy. In this paper, we devise a novel framework of training a deep network by adapting samples of other subjects as a means of domain adaptation. Assuming that there are EEG trials of motor-imagery tasks from multiple subjects available, we first select a subject whose EEG signal characteristics are similar to the target subject based on their power spectral density in resting-state EEG signals. We then use EEG signals of both the selected subject (called a source subject) and the target subject jointly in training a deep network. Rather than training a single path network, we adopt a multi-path network architecture, where the shared bottom layers are used to discover common features for both source and target subjects, while the upper layers branch out into (1) source-target subject identification, (2) label prediction optimized for a source subject, and (3) label prediction optimized for a target subject. Based on our experimental results over the BCI Competition IV-IIa dataset, we validated the effectiveness of the proposed framework in various aspects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信