{"title":"基于运动图像的脑机接口域自适应与源选择","authors":"Eunjin Jeon, Wonjun Ko, Heung-Il Suk","doi":"10.1109/IWW-BCI.2019.8737340","DOIUrl":null,"url":null,"abstract":"Recent successes of deep learning methods in various applications have inspired BCI researchers for their use in EEG classification. However, data insufficiency and high intra- and inter-subject variabilities hinder from taking their advantage of discovering complex patterns inherent in data, which can be potentially useful to enhance EEG classification accuracy. In this paper, we devise a novel framework of training a deep network by adapting samples of other subjects as a means of domain adaptation. Assuming that there are EEG trials of motor-imagery tasks from multiple subjects available, we first select a subject whose EEG signal characteristics are similar to the target subject based on their power spectral density in resting-state EEG signals. We then use EEG signals of both the selected subject (called a source subject) and the target subject jointly in training a deep network. Rather than training a single path network, we adopt a multi-path network architecture, where the shared bottom layers are used to discover common features for both source and target subjects, while the upper layers branch out into (1) source-target subject identification, (2) label prediction optimized for a source subject, and (3) label prediction optimized for a target subject. Based on our experimental results over the BCI Competition IV-IIa dataset, we validated the effectiveness of the proposed framework in various aspects.","PeriodicalId":345970,"journal":{"name":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Domain Adaptation with Source Selection for Motor-Imagery based BCI\",\"authors\":\"Eunjin Jeon, Wonjun Ko, Heung-Il Suk\",\"doi\":\"10.1109/IWW-BCI.2019.8737340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent successes of deep learning methods in various applications have inspired BCI researchers for their use in EEG classification. However, data insufficiency and high intra- and inter-subject variabilities hinder from taking their advantage of discovering complex patterns inherent in data, which can be potentially useful to enhance EEG classification accuracy. In this paper, we devise a novel framework of training a deep network by adapting samples of other subjects as a means of domain adaptation. Assuming that there are EEG trials of motor-imagery tasks from multiple subjects available, we first select a subject whose EEG signal characteristics are similar to the target subject based on their power spectral density in resting-state EEG signals. We then use EEG signals of both the selected subject (called a source subject) and the target subject jointly in training a deep network. Rather than training a single path network, we adopt a multi-path network architecture, where the shared bottom layers are used to discover common features for both source and target subjects, while the upper layers branch out into (1) source-target subject identification, (2) label prediction optimized for a source subject, and (3) label prediction optimized for a target subject. Based on our experimental results over the BCI Competition IV-IIa dataset, we validated the effectiveness of the proposed framework in various aspects.\",\"PeriodicalId\":345970,\"journal\":{\"name\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 7th International Winter Conference on Brain-Computer Interface (BCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWW-BCI.2019.8737340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 7th International Winter Conference on Brain-Computer Interface (BCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWW-BCI.2019.8737340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Domain Adaptation with Source Selection for Motor-Imagery based BCI
Recent successes of deep learning methods in various applications have inspired BCI researchers for their use in EEG classification. However, data insufficiency and high intra- and inter-subject variabilities hinder from taking their advantage of discovering complex patterns inherent in data, which can be potentially useful to enhance EEG classification accuracy. In this paper, we devise a novel framework of training a deep network by adapting samples of other subjects as a means of domain adaptation. Assuming that there are EEG trials of motor-imagery tasks from multiple subjects available, we first select a subject whose EEG signal characteristics are similar to the target subject based on their power spectral density in resting-state EEG signals. We then use EEG signals of both the selected subject (called a source subject) and the target subject jointly in training a deep network. Rather than training a single path network, we adopt a multi-path network architecture, where the shared bottom layers are used to discover common features for both source and target subjects, while the upper layers branch out into (1) source-target subject identification, (2) label prediction optimized for a source subject, and (3) label prediction optimized for a target subject. Based on our experimental results over the BCI Competition IV-IIa dataset, we validated the effectiveness of the proposed framework in various aspects.