V. Nemani, Jinqiang Liu, Navaid Ahmed, Adam Cartwright, G. Kremer, Chao Hu
{"title":"基于可靠性的再制造设计经济与能源评价:以液压歧管为例","authors":"V. Nemani, Jinqiang Liu, Navaid Ahmed, Adam Cartwright, G. Kremer, Chao Hu","doi":"10.1115/detc2021-67996","DOIUrl":null,"url":null,"abstract":"\n Design for Remanufacturing (DfRem) is an attractive approach for sustainable product development. Evaluation of DfRem strategies, from both economic and environmental perspectives, at an early design stage can allow the designers to make informed decisions when choosing the best design option. Studying the long-term implications of a particular design scenario requires quantifying the benefits of remanufacturing for multiple life cycles while considering the reliability of the product. In addition to comparing designs on a one-to-one basis, we find that including reliability provides a different insight into comparing design strategies. We present a reliability-informed cost and energy analysis framework that accounts for product reliability for multiple remanufacturing cycles within a certain warranty policy. The variation of reuse rate over successive remanufacturing cycles is formulated using a branched power-law model which provides probabilistic scenarios of reusing or replacing with new units. To demonstrate the utility of this framework, we use the case study of a hydraulic manifold, which is a component of a transmission used in some agricultural equipment, and use real-world field reliability data to quantify the transmission’s reliability. Three design improvement changes are proposed for the manifold and we quantify the costs and energy consumption associated with each of the design changes for multiple remanufacturing cycles.","PeriodicalId":299235,"journal":{"name":"Volume 3B: 47th Design Automation Conference (DAC)","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reliability-Informed Economic and Energy Evaluation for Design for Remanufacturing: A Case Study on a Hydraulic Manifold\",\"authors\":\"V. Nemani, Jinqiang Liu, Navaid Ahmed, Adam Cartwright, G. Kremer, Chao Hu\",\"doi\":\"10.1115/detc2021-67996\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Design for Remanufacturing (DfRem) is an attractive approach for sustainable product development. Evaluation of DfRem strategies, from both economic and environmental perspectives, at an early design stage can allow the designers to make informed decisions when choosing the best design option. Studying the long-term implications of a particular design scenario requires quantifying the benefits of remanufacturing for multiple life cycles while considering the reliability of the product. In addition to comparing designs on a one-to-one basis, we find that including reliability provides a different insight into comparing design strategies. We present a reliability-informed cost and energy analysis framework that accounts for product reliability for multiple remanufacturing cycles within a certain warranty policy. The variation of reuse rate over successive remanufacturing cycles is formulated using a branched power-law model which provides probabilistic scenarios of reusing or replacing with new units. To demonstrate the utility of this framework, we use the case study of a hydraulic manifold, which is a component of a transmission used in some agricultural equipment, and use real-world field reliability data to quantify the transmission’s reliability. Three design improvement changes are proposed for the manifold and we quantify the costs and energy consumption associated with each of the design changes for multiple remanufacturing cycles.\",\"PeriodicalId\":299235,\"journal\":{\"name\":\"Volume 3B: 47th Design Automation Conference (DAC)\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 3B: 47th Design Automation Conference (DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/detc2021-67996\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 3B: 47th Design Automation Conference (DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2021-67996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Reliability-Informed Economic and Energy Evaluation for Design for Remanufacturing: A Case Study on a Hydraulic Manifold
Design for Remanufacturing (DfRem) is an attractive approach for sustainable product development. Evaluation of DfRem strategies, from both economic and environmental perspectives, at an early design stage can allow the designers to make informed decisions when choosing the best design option. Studying the long-term implications of a particular design scenario requires quantifying the benefits of remanufacturing for multiple life cycles while considering the reliability of the product. In addition to comparing designs on a one-to-one basis, we find that including reliability provides a different insight into comparing design strategies. We present a reliability-informed cost and energy analysis framework that accounts for product reliability for multiple remanufacturing cycles within a certain warranty policy. The variation of reuse rate over successive remanufacturing cycles is formulated using a branched power-law model which provides probabilistic scenarios of reusing or replacing with new units. To demonstrate the utility of this framework, we use the case study of a hydraulic manifold, which is a component of a transmission used in some agricultural equipment, and use real-world field reliability data to quantify the transmission’s reliability. Three design improvement changes are proposed for the manifold and we quantify the costs and energy consumption associated with each of the design changes for multiple remanufacturing cycles.