多波束数据自动滤波技术

Yu Yan, Linfeng Yuan, Longjiang Ran, Hui Yin, X. Xiao
{"title":"多波束数据自动滤波技术","authors":"Yu Yan, Linfeng Yuan, Longjiang Ran, Hui Yin, X. Xiao","doi":"10.1109/ICGMRS55602.2022.9849352","DOIUrl":null,"url":null,"abstract":"Aiming at the characteristics of complex noise sources in multi-beam bathymetric data, this paper proposes a multi-beam automatic filtering method that combines filtering of optimal reference curved surface and trend surface. By implementing statistical filtering to pre-process the data, the optimal reference curved surface is constructed based on the filtered terrain data, the theoretical optimal depth value of each beam point is calculated. The optimal reference curved surface is filtered by combining the depth tolerance to determine whether the point is a noise point. Then the trend surface is constructed using the filtered non-noise data, and the trend surface is filtered on the original point cloud data. Through the verification of the measured data, this method can effectively remove most of the cluster noises in the multi-beam bathymetric data and is more efficient than manual processing.","PeriodicalId":129909,"journal":{"name":"2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Multi-beam Data Automatic Filtering Technology\",\"authors\":\"Yu Yan, Linfeng Yuan, Longjiang Ran, Hui Yin, X. Xiao\",\"doi\":\"10.1109/ICGMRS55602.2022.9849352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the characteristics of complex noise sources in multi-beam bathymetric data, this paper proposes a multi-beam automatic filtering method that combines filtering of optimal reference curved surface and trend surface. By implementing statistical filtering to pre-process the data, the optimal reference curved surface is constructed based on the filtered terrain data, the theoretical optimal depth value of each beam point is calculated. The optimal reference curved surface is filtered by combining the depth tolerance to determine whether the point is a noise point. Then the trend surface is constructed using the filtered non-noise data, and the trend surface is filtered on the original point cloud data. Through the verification of the measured data, this method can effectively remove most of the cluster noises in the multi-beam bathymetric data and is more efficient than manual processing.\",\"PeriodicalId\":129909,\"journal\":{\"name\":\"2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICGMRS55602.2022.9849352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 3rd International Conference on Geology, Mapping and Remote Sensing (ICGMRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICGMRS55602.2022.9849352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

针对多波束测深数据噪声源复杂的特点,提出了一种结合最优参考曲面和趋势面滤波的多波束自动滤波方法。通过统计滤波对数据进行预处理,基于滤波后的地形数据构造最优参考曲面,计算出各波束点的理论最优深度值。结合深度容差对最佳参考曲面进行滤波,判断该点是否为噪声点。然后利用滤波后的非噪声数据构造趋势面,并对原始点云数据进行趋势面滤波。通过实测数据的验证,该方法能够有效去除多波束测深数据中的大部分聚类噪声,比人工处理效率更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-beam Data Automatic Filtering Technology
Aiming at the characteristics of complex noise sources in multi-beam bathymetric data, this paper proposes a multi-beam automatic filtering method that combines filtering of optimal reference curved surface and trend surface. By implementing statistical filtering to pre-process the data, the optimal reference curved surface is constructed based on the filtered terrain data, the theoretical optimal depth value of each beam point is calculated. The optimal reference curved surface is filtered by combining the depth tolerance to determine whether the point is a noise point. Then the trend surface is constructed using the filtered non-noise data, and the trend surface is filtered on the original point cloud data. Through the verification of the measured data, this method can effectively remove most of the cluster noises in the multi-beam bathymetric data and is more efficient than manual processing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信