{"title":"基于深度强化学习的移动机器人避障","authors":"Shumin Feng","doi":"10.1115/DETC2019-97536","DOIUrl":null,"url":null,"abstract":"\n Obstacle avoidance is one of the core problems in the field of mobile robot autonomous navigation. This paper aims to solve the obstacle avoidance problem using Deep Reinforcement Learning. In previous work, various mathematical models have been developed to plan collision-free paths for such robots. In contrast, our method enables the robot to learn by itself from its experiences, and then fit a mathematical model by updating the parameters of a neural network. The derived mathematical model is capable of choosing an action directly according to the input sensor data for the mobile robot. In this paper, we develop an obstacle avoidance framework based on deep reinforcement learning. A 3D simulator is designed as well to provide the training and testing environments. In addition, we developed and compared obstacle avoidance methods based on different Deep Reinforcement Learning strategies, such as Deep Q-Network (DQN), Double Deep Q-Network (DDQN) and DDQN with Prioritized Experience Replay (DDQN-PER) using our simulator.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Mobile Robot Obstacle Avoidance Based on Deep Reinforcement Learning\",\"authors\":\"Shumin Feng\",\"doi\":\"10.1115/DETC2019-97536\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Obstacle avoidance is one of the core problems in the field of mobile robot autonomous navigation. This paper aims to solve the obstacle avoidance problem using Deep Reinforcement Learning. In previous work, various mathematical models have been developed to plan collision-free paths for such robots. In contrast, our method enables the robot to learn by itself from its experiences, and then fit a mathematical model by updating the parameters of a neural network. The derived mathematical model is capable of choosing an action directly according to the input sensor data for the mobile robot. In this paper, we develop an obstacle avoidance framework based on deep reinforcement learning. A 3D simulator is designed as well to provide the training and testing environments. In addition, we developed and compared obstacle avoidance methods based on different Deep Reinforcement Learning strategies, such as Deep Q-Network (DQN), Double Deep Q-Network (DDQN) and DDQN with Prioritized Experience Replay (DDQN-PER) using our simulator.\",\"PeriodicalId\":178253,\"journal\":{\"name\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5A: 43rd Mechanisms and Robotics Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/DETC2019-97536\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/DETC2019-97536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
避障是移动机器人自主导航领域的核心问题之一。本文旨在利用深度强化学习解决避障问题。在之前的工作中,已经开发了各种数学模型来规划此类机器人的无碰撞路径。相比之下,我们的方法使机器人能够从自己的经验中学习,然后通过更新神经网络的参数来拟合数学模型。所建立的数学模型能够根据输入的传感器数据直接选择移动机器人的动作。在本文中,我们开发了一个基于深度强化学习的避障框架。此外,还设计了一个3D模拟器来提供训练和测试环境。此外,我们开发并比较了基于不同深度强化学习策略的避障方法,如Deep Q-Network (DQN)、Double Deep Q-Network (DDQN)和DDQN with priorities Experience Replay (DDQN- per)。
Mobile Robot Obstacle Avoidance Based on Deep Reinforcement Learning
Obstacle avoidance is one of the core problems in the field of mobile robot autonomous navigation. This paper aims to solve the obstacle avoidance problem using Deep Reinforcement Learning. In previous work, various mathematical models have been developed to plan collision-free paths for such robots. In contrast, our method enables the robot to learn by itself from its experiences, and then fit a mathematical model by updating the parameters of a neural network. The derived mathematical model is capable of choosing an action directly according to the input sensor data for the mobile robot. In this paper, we develop an obstacle avoidance framework based on deep reinforcement learning. A 3D simulator is designed as well to provide the training and testing environments. In addition, we developed and compared obstacle avoidance methods based on different Deep Reinforcement Learning strategies, such as Deep Q-Network (DQN), Double Deep Q-Network (DDQN) and DDQN with Prioritized Experience Replay (DDQN-PER) using our simulator.