J. Byers, Ryan Leemans, S. McDermott, Vikram Mittal
{"title":"通过整体模型量化武器重量对杀伤力的影响","authors":"J. Byers, Ryan Leemans, S. McDermott, Vikram Mittal","doi":"10.37266/ISER.2018V6I2.PP75-81","DOIUrl":null,"url":null,"abstract":"Though it is widely known that weapon weight affects shooter stability, the quantitative effects on lethality and survivability are not well known. This issue stems from weapon lethality primarily being captured by equipment properties. A more holistic analysis can be performed by treating the soldier as a system by incorporating human factors with equipment performance specifications. This analysis requires the building of human factor models to appropriately capture lethality. The model development effort started with the collecting of data from experiments where the shot group accuracy was measured for weighted rifles. The resulting data was used to generate a mathematical model. This model, along with other human factor models, was integrated into the Weapon Lethality Service (WLS), a cloud-based simulation. The WLS was then set up to represent possible combat situations; the results were used to quantify the change in soldier lethality and survivability from changing the weapon weight.","PeriodicalId":349010,"journal":{"name":"Industrial and Systems Engineering Review","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantifying the Effects of Weapon Weight on Lethality through Holistic Modeling\",\"authors\":\"J. Byers, Ryan Leemans, S. McDermott, Vikram Mittal\",\"doi\":\"10.37266/ISER.2018V6I2.PP75-81\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Though it is widely known that weapon weight affects shooter stability, the quantitative effects on lethality and survivability are not well known. This issue stems from weapon lethality primarily being captured by equipment properties. A more holistic analysis can be performed by treating the soldier as a system by incorporating human factors with equipment performance specifications. This analysis requires the building of human factor models to appropriately capture lethality. The model development effort started with the collecting of data from experiments where the shot group accuracy was measured for weighted rifles. The resulting data was used to generate a mathematical model. This model, along with other human factor models, was integrated into the Weapon Lethality Service (WLS), a cloud-based simulation. The WLS was then set up to represent possible combat situations; the results were used to quantify the change in soldier lethality and survivability from changing the weapon weight.\",\"PeriodicalId\":349010,\"journal\":{\"name\":\"Industrial and Systems Engineering Review\",\"volume\":\"31 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial and Systems Engineering Review\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.37266/ISER.2018V6I2.PP75-81\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial and Systems Engineering Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.37266/ISER.2018V6I2.PP75-81","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Quantifying the Effects of Weapon Weight on Lethality through Holistic Modeling
Though it is widely known that weapon weight affects shooter stability, the quantitative effects on lethality and survivability are not well known. This issue stems from weapon lethality primarily being captured by equipment properties. A more holistic analysis can be performed by treating the soldier as a system by incorporating human factors with equipment performance specifications. This analysis requires the building of human factor models to appropriately capture lethality. The model development effort started with the collecting of data from experiments where the shot group accuracy was measured for weighted rifles. The resulting data was used to generate a mathematical model. This model, along with other human factor models, was integrated into the Weapon Lethality Service (WLS), a cloud-based simulation. The WLS was then set up to represent possible combat situations; the results were used to quantify the change in soldier lethality and survivability from changing the weapon weight.