Rakesh Pavan, Madhumitha Nara, S. Gopinath, Nagamma Patil
{"title":"基于贝叶斯优化和梯度增强的钓鱼网站检测","authors":"Rakesh Pavan, Madhumitha Nara, S. Gopinath, Nagamma Patil","doi":"10.1109/CISS50987.2021.9400317","DOIUrl":null,"url":null,"abstract":"We propose an Extreme Gradient Boosting framework for classification and regression problems emerging in machine learning for small-sized data sources sampled from a discrete distribution, i.e. data containing discrete or quantized attributes. The model parameters are iteratively refined from a prior belief for specific use cases using Bayesian optimization. We focus the application area of this framework on detecting fraudulent websites. With properly stated reasoning, we empirically test our methodology on a publicly available and bench-marked UCI Phishing dataset to demonstrate the superior performance of this approach as compared to existing methods in the literature.","PeriodicalId":228112,"journal":{"name":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Bayesian Optimization and Gradient Boosting to Detect Phishing Websites\",\"authors\":\"Rakesh Pavan, Madhumitha Nara, S. Gopinath, Nagamma Patil\",\"doi\":\"10.1109/CISS50987.2021.9400317\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an Extreme Gradient Boosting framework for classification and regression problems emerging in machine learning for small-sized data sources sampled from a discrete distribution, i.e. data containing discrete or quantized attributes. The model parameters are iteratively refined from a prior belief for specific use cases using Bayesian optimization. We focus the application area of this framework on detecting fraudulent websites. With properly stated reasoning, we empirically test our methodology on a publicly available and bench-marked UCI Phishing dataset to demonstrate the superior performance of this approach as compared to existing methods in the literature.\",\"PeriodicalId\":228112,\"journal\":{\"name\":\"2021 55th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 55th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS50987.2021.9400317\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 55th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS50987.2021.9400317","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Bayesian Optimization and Gradient Boosting to Detect Phishing Websites
We propose an Extreme Gradient Boosting framework for classification and regression problems emerging in machine learning for small-sized data sources sampled from a discrete distribution, i.e. data containing discrete or quantized attributes. The model parameters are iteratively refined from a prior belief for specific use cases using Bayesian optimization. We focus the application area of this framework on detecting fraudulent websites. With properly stated reasoning, we empirically test our methodology on a publicly available and bench-marked UCI Phishing dataset to demonstrate the superior performance of this approach as compared to existing methods in the literature.