基于树结构的稀疏矩阵结构的空间高效格式

I. Šimeček, D. Langr, P. Tvrdík
{"title":"基于树结构的稀疏矩阵结构的空间高效格式","authors":"I. Šimeček, D. Langr, P. Tvrdík","doi":"10.1109/SYNASC.2013.52","DOIUrl":null,"url":null,"abstract":"Very large sparse matrices are often processed on massively parallel computer systems with distributed memory architectures consisting of tens or hundreds of thousands of processor cores. The problem occurs when we want or need to load/store these matrices from/to a distributed file system. This paper deals with the design of new formats for storing very large sparse matrices suitable for parallel I/O systems. The first one is based on arithmetic coding and the second one is based on binary tree format. We compare the space complexity of common storage formats and our new formats and prove that the latter are considerably more space efficient.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"90 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Space Efficient Formats for Structure of Sparse Matrices Based on Tree Structures\",\"authors\":\"I. Šimeček, D. Langr, P. Tvrdík\",\"doi\":\"10.1109/SYNASC.2013.52\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Very large sparse matrices are often processed on massively parallel computer systems with distributed memory architectures consisting of tens or hundreds of thousands of processor cores. The problem occurs when we want or need to load/store these matrices from/to a distributed file system. This paper deals with the design of new formats for storing very large sparse matrices suitable for parallel I/O systems. The first one is based on arithmetic coding and the second one is based on binary tree format. We compare the space complexity of common storage formats and our new formats and prove that the latter are considerably more space efficient.\",\"PeriodicalId\":293085,\"journal\":{\"name\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"volume\":\"90 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SYNASC.2013.52\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.52","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

非常大的稀疏矩阵通常在具有数万或数十万处理器内核组成的分布式内存体系结构的大规模并行计算机系统上处理。当我们想要或需要从分布式文件系统加载/存储这些矩阵时,问题就出现了。本文研究了适合于并行I/O系统的超大稀疏矩阵存储新格式的设计。第一种是基于算术编码,第二种是基于二叉树格式。我们比较了常用的存储格式和我们的新格式的空间复杂度,证明后者的空间效率要高得多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Space Efficient Formats for Structure of Sparse Matrices Based on Tree Structures
Very large sparse matrices are often processed on massively parallel computer systems with distributed memory architectures consisting of tens or hundreds of thousands of processor cores. The problem occurs when we want or need to load/store these matrices from/to a distributed file system. This paper deals with the design of new formats for storing very large sparse matrices suitable for parallel I/O systems. The first one is based on arithmetic coding and the second one is based on binary tree format. We compare the space complexity of common storage formats and our new formats and prove that the latter are considerably more space efficient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信