基于希尔伯特变换的癫痫发作预测方法

Heba M. Emara, Mohamed Elwekeil, T. Taha, A. El-Fishawy, S. El-Rabaie, T. Alotaiby, S. Alshebeili, F. El-Samie
{"title":"基于希尔伯特变换的癫痫发作预测方法","authors":"Heba M. Emara, Mohamed Elwekeil, T. Taha, A. El-Fishawy, S. El-Rabaie, T. Alotaiby, S. Alshebeili, F. El-Samie","doi":"10.21608/mjeer.2019.62744","DOIUrl":null,"url":null,"abstract":"This paper introduces a patient-specific method for seizure prediction applied to scalp Electroencephalography (sEEG) signals. The proposed method depends on computing the instantaneous amplitude of the analytic signal by applying Hilbert transform on EEG signals. Then, the Probability Density Functions (PDFs) are estimated for amplitude, local mean, local variance, derivative and median as major features. This is followed by a threshold-based classifier which discriminates between pre-ictal and inter-ictal periods. The proposed approach utilizes an adaptive algorithm for channel selection to identify the optimum number of needed channels which is useful for real-time applications. It is applied to all patients from the CHB-MIT database, achieving an average prediction rate of 96.46%, an average false alarm rate of 0.028077/h and an average prediction time of 60.1595 minutes using a 90-minute prediction horizon. Experimental results prove that Hilbert transform is more efficient for prediction than other existing approaches.","PeriodicalId":218019,"journal":{"name":"Menoufia Journal of Electronic Engineering Research","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Epileptic Seizure Prediction Approach Based on Hilbert Transform\",\"authors\":\"Heba M. Emara, Mohamed Elwekeil, T. Taha, A. El-Fishawy, S. El-Rabaie, T. Alotaiby, S. Alshebeili, F. El-Samie\",\"doi\":\"10.21608/mjeer.2019.62744\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a patient-specific method for seizure prediction applied to scalp Electroencephalography (sEEG) signals. The proposed method depends on computing the instantaneous amplitude of the analytic signal by applying Hilbert transform on EEG signals. Then, the Probability Density Functions (PDFs) are estimated for amplitude, local mean, local variance, derivative and median as major features. This is followed by a threshold-based classifier which discriminates between pre-ictal and inter-ictal periods. The proposed approach utilizes an adaptive algorithm for channel selection to identify the optimum number of needed channels which is useful for real-time applications. It is applied to all patients from the CHB-MIT database, achieving an average prediction rate of 96.46%, an average false alarm rate of 0.028077/h and an average prediction time of 60.1595 minutes using a 90-minute prediction horizon. Experimental results prove that Hilbert transform is more efficient for prediction than other existing approaches.\",\"PeriodicalId\":218019,\"journal\":{\"name\":\"Menoufia Journal of Electronic Engineering Research\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Menoufia Journal of Electronic Engineering Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/mjeer.2019.62744\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Menoufia Journal of Electronic Engineering Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/mjeer.2019.62744","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种应用于头皮脑电图(sEEG)信号的患者特异性癫痫发作预测方法。该方法通过对脑电信号进行希尔伯特变换,计算分析信号的瞬时幅值。然后,估计概率密度函数(pdf)的振幅,局部均值,局部方差,导数和中位数作为主要特征。接下来是一个基于阈值的分类器,它可以区分临界前和间隔时期。该方法利用自适应信道选择算法来确定所需信道的最佳数量,这对实时应用非常有用。应用于CHB-MIT数据库的所有患者,在90分钟的预测范围内,平均预测率为96.46%,平均虚警率为0.028077/h,平均预测时间为60.1595分钟。实验结果证明,希尔伯特变换的预测效率高于现有的其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Epileptic Seizure Prediction Approach Based on Hilbert Transform
This paper introduces a patient-specific method for seizure prediction applied to scalp Electroencephalography (sEEG) signals. The proposed method depends on computing the instantaneous amplitude of the analytic signal by applying Hilbert transform on EEG signals. Then, the Probability Density Functions (PDFs) are estimated for amplitude, local mean, local variance, derivative and median as major features. This is followed by a threshold-based classifier which discriminates between pre-ictal and inter-ictal periods. The proposed approach utilizes an adaptive algorithm for channel selection to identify the optimum number of needed channels which is useful for real-time applications. It is applied to all patients from the CHB-MIT database, achieving an average prediction rate of 96.46%, an average false alarm rate of 0.028077/h and an average prediction time of 60.1595 minutes using a 90-minute prediction horizon. Experimental results prove that Hilbert transform is more efficient for prediction than other existing approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信