基于边缘关系直方图的逐草图查询图像检索

Y. Kumagai, T. Arikawa
{"title":"基于边缘关系直方图的逐草图查询图像检索","authors":"Y. Kumagai, T. Arikawa","doi":"10.1587/TRANSINF.E96.D.340","DOIUrl":null,"url":null,"abstract":"In the Query-by-sketch image retrieval, feature extraction method is important, because the retrieval result depend on image feature. In this paper, we propose the query-by-sketch image retrieval using Edge Relation Histogram (ERH) as global and local feature. ERH focuses on the relation among edge pixels, and ERH is shift-, scale-, rotation- and symmetry-invariant feature. This method was applied to 20,000 images in Corel Photo Gallery. Experimental results show that the proposed method is effective in retrieving images.","PeriodicalId":295384,"journal":{"name":"IAPR International Workshop on Machine Vision Applications","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Query-by-Sketch Image Retrieval Using Edge Relation Histogram\",\"authors\":\"Y. Kumagai, T. Arikawa\",\"doi\":\"10.1587/TRANSINF.E96.D.340\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the Query-by-sketch image retrieval, feature extraction method is important, because the retrieval result depend on image feature. In this paper, we propose the query-by-sketch image retrieval using Edge Relation Histogram (ERH) as global and local feature. ERH focuses on the relation among edge pixels, and ERH is shift-, scale-, rotation- and symmetry-invariant feature. This method was applied to 20,000 images in Corel Photo Gallery. Experimental results show that the proposed method is effective in retrieving images.\",\"PeriodicalId\":295384,\"journal\":{\"name\":\"IAPR International Workshop on Machine Vision Applications\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IAPR International Workshop on Machine Vision Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1587/TRANSINF.E96.D.340\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IAPR International Workshop on Machine Vision Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/TRANSINF.E96.D.340","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

摘要在基于草图查询的图像检索中,特征提取方法非常重要,因为检索结果取决于图像的特征。本文提出了一种基于边缘关系直方图(ERH)作为全局特征和局部特征的基于草图查询的图像检索方法。ERH关注的是边缘像素之间的关系,ERH是平移、比例、旋转和对称不变的特征。该方法应用于Corel图片库中的20000张图片。实验结果表明,该方法在图像检索中是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Query-by-Sketch Image Retrieval Using Edge Relation Histogram
In the Query-by-sketch image retrieval, feature extraction method is important, because the retrieval result depend on image feature. In this paper, we propose the query-by-sketch image retrieval using Edge Relation Histogram (ERH) as global and local feature. ERH focuses on the relation among edge pixels, and ERH is shift-, scale-, rotation- and symmetry-invariant feature. This method was applied to 20,000 images in Corel Photo Gallery. Experimental results show that the proposed method is effective in retrieving images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信