{"title":"多核分流并行:一种基于机器学习的方法","authors":"Zheng Wang, M. O’Boyle","doi":"10.1145/1854273.1854313","DOIUrl":null,"url":null,"abstract":"Stream based languages are a popular approach to expressing parallelism in modern applications. The efficient mapping of streaming parallelism to multi-core processors is, however, highly dependent on the program and underlying architecture. We address this by developing a portable and automatic compiler-based approach to partitioning streaming programs using machine learning. Our technique predicts the ideal partition structure for a given streaming application using prior knowledge learned off-line. Using the predictor we rapidly search the program space (without executing any code) to generate and select a good partition. We applied this technique to standard StreamIt applications and compared against existing approaches. On a 4-core platform, our approach achieves 60% of the best performance found by iteratively compiling and executing over 3000 different partitions per program. We obtain, on average, a 1.90x speedup over the already tuned partitioning scheme of the StreamIt compiler. When compared against a state-of-the-art analytical, model-based approach, we achieve, on average, a 1.77x performance improvement. By porting our approach to a 8-core platform, we are able to obtain 1.8x improvement over the StreamIt default scheme, demonstrating the portability of our approach.","PeriodicalId":422461,"journal":{"name":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"118","resultStr":"{\"title\":\"Partitioning streaming parallelism for multi-cores: A machine learning based approach\",\"authors\":\"Zheng Wang, M. O’Boyle\",\"doi\":\"10.1145/1854273.1854313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Stream based languages are a popular approach to expressing parallelism in modern applications. The efficient mapping of streaming parallelism to multi-core processors is, however, highly dependent on the program and underlying architecture. We address this by developing a portable and automatic compiler-based approach to partitioning streaming programs using machine learning. Our technique predicts the ideal partition structure for a given streaming application using prior knowledge learned off-line. Using the predictor we rapidly search the program space (without executing any code) to generate and select a good partition. We applied this technique to standard StreamIt applications and compared against existing approaches. On a 4-core platform, our approach achieves 60% of the best performance found by iteratively compiling and executing over 3000 different partitions per program. We obtain, on average, a 1.90x speedup over the already tuned partitioning scheme of the StreamIt compiler. When compared against a state-of-the-art analytical, model-based approach, we achieve, on average, a 1.77x performance improvement. By porting our approach to a 8-core platform, we are able to obtain 1.8x improvement over the StreamIt default scheme, demonstrating the portability of our approach.\",\"PeriodicalId\":422461,\"journal\":{\"name\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-09-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"118\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1854273.1854313\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 19th International Conference on Parallel Architectures and Compilation Techniques (PACT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1854273.1854313","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Partitioning streaming parallelism for multi-cores: A machine learning based approach
Stream based languages are a popular approach to expressing parallelism in modern applications. The efficient mapping of streaming parallelism to multi-core processors is, however, highly dependent on the program and underlying architecture. We address this by developing a portable and automatic compiler-based approach to partitioning streaming programs using machine learning. Our technique predicts the ideal partition structure for a given streaming application using prior knowledge learned off-line. Using the predictor we rapidly search the program space (without executing any code) to generate and select a good partition. We applied this technique to standard StreamIt applications and compared against existing approaches. On a 4-core platform, our approach achieves 60% of the best performance found by iteratively compiling and executing over 3000 different partitions per program. We obtain, on average, a 1.90x speedup over the already tuned partitioning scheme of the StreamIt compiler. When compared against a state-of-the-art analytical, model-based approach, we achieve, on average, a 1.77x performance improvement. By porting our approach to a 8-core platform, we are able to obtain 1.8x improvement over the StreamIt default scheme, demonstrating the portability of our approach.