涡轮叶片排循环对称模态的高效代理建模

Anindya Bhaduri, Jing Li, Sayan Ghosh, Liping Wang
{"title":"涡轮叶片排循环对称模态的高效代理建模","authors":"Anindya Bhaduri, Jing Li, Sayan Ghosh, Liping Wang","doi":"10.1115/gt2022-83414","DOIUrl":null,"url":null,"abstract":"\n In this study, we consider the Modal Cyclic Symmetric (MCS) analysis to generate the modal frequencies and mode shapes of a tip-shrouded turbine blade row. In total 87 input parameters are considered here that define the geometry of the turbine blades. The objective here is to build an efficient surrogate model which maps these input parameters to the mode shapes. The main challenge is the high dimensionality of a complex mode shape at a mesh resolution of industrial standard which is almost of the order of O(107). Thus, the idea here is to efficiently reduce the high dimensional output into a lower dimensional representation using the unsupervised deep learning architecture called the Convolutional Variational AutoEncoder (CVAE). The CVAE model helps in performing efficient surrogate model building using GE’s Bayesian Hybrid Model (BHM) in a lower dimensional output space as well as produce feasible mode shapes for new geometries after training.","PeriodicalId":171593,"journal":{"name":"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient Surrogate Modeling for Turbine Blade Row Cyclic Symmetric Mode Shapes\",\"authors\":\"Anindya Bhaduri, Jing Li, Sayan Ghosh, Liping Wang\",\"doi\":\"10.1115/gt2022-83414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we consider the Modal Cyclic Symmetric (MCS) analysis to generate the modal frequencies and mode shapes of a tip-shrouded turbine blade row. In total 87 input parameters are considered here that define the geometry of the turbine blades. The objective here is to build an efficient surrogate model which maps these input parameters to the mode shapes. The main challenge is the high dimensionality of a complex mode shape at a mesh resolution of industrial standard which is almost of the order of O(107). Thus, the idea here is to efficiently reduce the high dimensional output into a lower dimensional representation using the unsupervised deep learning architecture called the Convolutional Variational AutoEncoder (CVAE). The CVAE model helps in performing efficient surrogate model building using GE’s Bayesian Hybrid Model (BHM) in a lower dimensional output space as well as produce feasible mode shapes for new geometries after training.\",\"PeriodicalId\":171593,\"journal\":{\"name\":\"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/gt2022-83414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 8B: Structures and Dynamics — Probabilistic Methods; Rotordynamics; Structural Mechanics and Vibration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/gt2022-83414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在这项研究中,我们考虑模态循环对称(MCS)分析,以产生一个顶冠涡轮叶片排的模态频率和模态振型。这里总共考虑了87个输入参数,这些参数定义了涡轮叶片的几何形状。这里的目标是建立一个有效的代理模型,将这些输入参数映射到模态振型。主要的挑战是在工业标准的网格分辨率下,复杂模态振型的高维数几乎是0(107)的数量级。因此,这里的想法是使用称为卷积变分自动编码器(CVAE)的无监督深度学习架构有效地将高维输出减少到较低维表示。CVAE模型有助于在低维输出空间中使用GE的贝叶斯混合模型(BHM)进行高效的代理模型构建,并在训练后为新几何形状生成可行的模态振型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Efficient Surrogate Modeling for Turbine Blade Row Cyclic Symmetric Mode Shapes
In this study, we consider the Modal Cyclic Symmetric (MCS) analysis to generate the modal frequencies and mode shapes of a tip-shrouded turbine blade row. In total 87 input parameters are considered here that define the geometry of the turbine blades. The objective here is to build an efficient surrogate model which maps these input parameters to the mode shapes. The main challenge is the high dimensionality of a complex mode shape at a mesh resolution of industrial standard which is almost of the order of O(107). Thus, the idea here is to efficiently reduce the high dimensional output into a lower dimensional representation using the unsupervised deep learning architecture called the Convolutional Variational AutoEncoder (CVAE). The CVAE model helps in performing efficient surrogate model building using GE’s Bayesian Hybrid Model (BHM) in a lower dimensional output space as well as produce feasible mode shapes for new geometries after training.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信