{"title":"用反调和均值表示Toader均值和算术均值组合的二重不等式","authors":"Weidong Jiang, Feng Qi (祁锋)","doi":"10.2298/PIM141026009J","DOIUrl":null,"url":null,"abstract":"We find the greatest value λ and the least value μ such that the double \n inequality C(λa +(1-λ)b, λb + (1-λ)a) < αA(a,b) + (1-α)T(a, b)< \n C(μa + (1-μ)b, μb + (1-μ)a) holds for all α (0,1) and a, b > 0 with \n a ≠ b, where C(a,b), A(a,b), and T(a,b) denote respectively the \n contraharmonic, arithmetic, and Toader means of two positive numbers a and \n b.","PeriodicalId":416273,"journal":{"name":"Publications De L'institut Mathematique","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean\",\"authors\":\"Weidong Jiang, Feng Qi (祁锋)\",\"doi\":\"10.2298/PIM141026009J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We find the greatest value λ and the least value μ such that the double \\n inequality C(λa +(1-λ)b, λb + (1-λ)a) < αA(a,b) + (1-α)T(a, b)< \\n C(μa + (1-μ)b, μb + (1-μ)a) holds for all α (0,1) and a, b > 0 with \\n a ≠ b, where C(a,b), A(a,b), and T(a,b) denote respectively the \\n contraharmonic, arithmetic, and Toader means of two positive numbers a and \\n b.\",\"PeriodicalId\":416273,\"journal\":{\"name\":\"Publications De L'institut Mathematique\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications De L'institut Mathematique\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2298/PIM141026009J\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications De L'institut Mathematique","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/PIM141026009J","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
摘要
对于所有α(0,1)和a,b > 0且a≠b的情况下,λ的最大值和μ的最小值使得二重不等式C(λa +(1-λ)b, λb +(1-λ) a) < α a (a,b) +(1 -α)T(a, b)< C(μa +(1 -μ)b, μb +(1 -μ)a)成立,其中C(a,b), a (a,b)和T(a,b)分别表示两个正数a和b的反调和、算术和Toader均值。
A double inequality for the combination of Toader mean and the arithmetic mean in terms of the contraharmonic mean
We find the greatest value λ and the least value μ such that the double
inequality C(λa +(1-λ)b, λb + (1-λ)a) < αA(a,b) + (1-α)T(a, b)<
C(μa + (1-μ)b, μb + (1-μ)a) holds for all α (0,1) and a, b > 0 with
a ≠ b, where C(a,b), A(a,b), and T(a,b) denote respectively the
contraharmonic, arithmetic, and Toader means of two positive numbers a and
b.