I. Kostakis, A. Zandieh, D. Hailu, D. Saeedkia, M. Missous
{"title":"1.55 μm脉冲激励下时域光谱系统中太赫兹器件的评价","authors":"I. Kostakis, A. Zandieh, D. Hailu, D. Saeedkia, M. Missous","doi":"10.1117/12.2029218","DOIUrl":null,"url":null,"abstract":"Following the development of efficient THz devices operating at 1550 nm based on low temperature (LT) grown semiconductor compounds, the effect of the substrate of such devices in the generated THz radiation is investigated, a new compact, portable and reconfigurable fiber based THz spectrometer is built and a pair of THz devices are evaluated in the spectrometer. The key findings are firstly the transparency of the InP substrate to THz radiation, which implies that the generated THz signal from these devices is not affected by the substrate, and secondly the development of a THz spectrometer at 1550 nm laser excitation, which can be used for high quality measurements for various material sensing and characterization applications.","PeriodicalId":344928,"journal":{"name":"Optics/Photonics in Security and Defence","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"THz devices evaluation in a time domain spectroscopy system at 1.55 μm pulse excitation\",\"authors\":\"I. Kostakis, A. Zandieh, D. Hailu, D. Saeedkia, M. Missous\",\"doi\":\"10.1117/12.2029218\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Following the development of efficient THz devices operating at 1550 nm based on low temperature (LT) grown semiconductor compounds, the effect of the substrate of such devices in the generated THz radiation is investigated, a new compact, portable and reconfigurable fiber based THz spectrometer is built and a pair of THz devices are evaluated in the spectrometer. The key findings are firstly the transparency of the InP substrate to THz radiation, which implies that the generated THz signal from these devices is not affected by the substrate, and secondly the development of a THz spectrometer at 1550 nm laser excitation, which can be used for high quality measurements for various material sensing and characterization applications.\",\"PeriodicalId\":344928,\"journal\":{\"name\":\"Optics/Photonics in Security and Defence\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optics/Photonics in Security and Defence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2029218\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optics/Photonics in Security and Defence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2029218","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
THz devices evaluation in a time domain spectroscopy system at 1.55 μm pulse excitation
Following the development of efficient THz devices operating at 1550 nm based on low temperature (LT) grown semiconductor compounds, the effect of the substrate of such devices in the generated THz radiation is investigated, a new compact, portable and reconfigurable fiber based THz spectrometer is built and a pair of THz devices are evaluated in the spectrometer. The key findings are firstly the transparency of the InP substrate to THz radiation, which implies that the generated THz signal from these devices is not affected by the substrate, and secondly the development of a THz spectrometer at 1550 nm laser excitation, which can be used for high quality measurements for various material sensing and characterization applications.