嵌入式系统中基于操作系统的设备驱动程序的综合

Shaojie Wang, S. Malik
{"title":"嵌入式系统中基于操作系统的设备驱动程序的综合","authors":"Shaojie Wang, S. Malik","doi":"10.1145/944645.944655","DOIUrl":null,"url":null,"abstract":"This paper presents a correct-by-construction synthesis method for generating operating system based device drivers from a formally specified device behavior model. Existing driver development is largely manual using an ad-hoc design methodology. Consequently, this task is error prone and becomes a bottleneck in embedded system design methodology. Our solution to this problem starts by accurately specifying device access behavior with a formal model, viz. extended event driven finite state machines. We state easy check soundness conditions on the model that subsequently guarantee properties such as bounded execution time and deadlock-free behavior. We design a deadlock-free resource accessing scheme for our device access model. Finally, we synthesize an operating system (OS) based event processing mechanism, which is the core of the device driver, using a disciplined methodology that assures the correctness of the resulting driver. We validate our synthesis method using two case studies: an infrared port and the USB device controller for an SA1100 based handheld. Besides assuring a correct-by-construction driver, the size of the specification is 70% smaller than a manually written driver, which is a strong indicator of improved design productivity.","PeriodicalId":174422,"journal":{"name":"First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721)","volume":"222 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Synthesizing operating system based device drivers in embedded systems\",\"authors\":\"Shaojie Wang, S. Malik\",\"doi\":\"10.1145/944645.944655\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a correct-by-construction synthesis method for generating operating system based device drivers from a formally specified device behavior model. Existing driver development is largely manual using an ad-hoc design methodology. Consequently, this task is error prone and becomes a bottleneck in embedded system design methodology. Our solution to this problem starts by accurately specifying device access behavior with a formal model, viz. extended event driven finite state machines. We state easy check soundness conditions on the model that subsequently guarantee properties such as bounded execution time and deadlock-free behavior. We design a deadlock-free resource accessing scheme for our device access model. Finally, we synthesize an operating system (OS) based event processing mechanism, which is the core of the device driver, using a disciplined methodology that assures the correctness of the resulting driver. We validate our synthesis method using two case studies: an infrared port and the USB device controller for an SA1100 based handheld. Besides assuring a correct-by-construction driver, the size of the specification is 70% smaller than a manually written driver, which is a strong indicator of improved design productivity.\",\"PeriodicalId\":174422,\"journal\":{\"name\":\"First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721)\",\"volume\":\"222 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/944645.944655\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"First IEEE/ACM/IFIP International Conference on Hardware/ Software Codesign and Systems Synthesis (IEEE Cat. No.03TH8721)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/944645.944655","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

本文提出了一种构造正确的综合方法,用于从正式指定的设备行为模型生成基于操作系统的设备驱动程序。现有的驱动程序开发主要是使用特别的设计方法手工完成的。因此,该任务容易出错,成为嵌入式系统设计方法的瓶颈。我们对这个问题的解决方案首先是用一个正式模型精确地指定设备访问行为,即扩展事件驱动的有限状态机。我们在模型上陈述了简单的检查健全性条件,这些条件随后保证了有界执行时间和无死锁行为等属性。我们设计了一种无死锁的设备访问模式。最后,我们综合了一个基于操作系统(OS)的事件处理机制,这是设备驱动程序的核心,使用一种严格的方法来确保生成的驱动程序的正确性。我们通过两个案例研究验证了我们的合成方法:一个红外端口和一个基于SA1100的手持设备的USB设备控制器。除了确保驱动器的正确性外,规格的尺寸比手动编写的驱动器小70%,这是提高设计生产率的一个强有力的指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synthesizing operating system based device drivers in embedded systems
This paper presents a correct-by-construction synthesis method for generating operating system based device drivers from a formally specified device behavior model. Existing driver development is largely manual using an ad-hoc design methodology. Consequently, this task is error prone and becomes a bottleneck in embedded system design methodology. Our solution to this problem starts by accurately specifying device access behavior with a formal model, viz. extended event driven finite state machines. We state easy check soundness conditions on the model that subsequently guarantee properties such as bounded execution time and deadlock-free behavior. We design a deadlock-free resource accessing scheme for our device access model. Finally, we synthesize an operating system (OS) based event processing mechanism, which is the core of the device driver, using a disciplined methodology that assures the correctness of the resulting driver. We validate our synthesis method using two case studies: an infrared port and the USB device controller for an SA1100 based handheld. Besides assuring a correct-by-construction driver, the size of the specification is 70% smaller than a manually written driver, which is a strong indicator of improved design productivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信