基于密度函数非参数估计的信号检测算法

R. Sinitsyn, F. Yanovsky
{"title":"基于密度函数非参数估计的信号检测算法","authors":"R. Sinitsyn, F. Yanovsky","doi":"10.1109/ECWT.2007.4403981","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to design radar signal detection algorithms that are applicable when a priori information is limited. The problem is formulated as testing hypothesis on the kind of density function. A novel method that allows to adopt permutation test in a practical algorithm is suggested and researched. The developed new adaptive algorithm is based on non-parametric kernel estimates of the density function. The results are useful for applications of signal detection in surveillance and remote sensing radar systems.","PeriodicalId":448587,"journal":{"name":"2007 European Conference on Wireless Technologies","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Signal Detection Algorithms Based on Non-Parametric Estimates of Density Function\",\"authors\":\"R. Sinitsyn, F. Yanovsky\",\"doi\":\"10.1109/ECWT.2007.4403981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel approach to design radar signal detection algorithms that are applicable when a priori information is limited. The problem is formulated as testing hypothesis on the kind of density function. A novel method that allows to adopt permutation test in a practical algorithm is suggested and researched. The developed new adaptive algorithm is based on non-parametric kernel estimates of the density function. The results are useful for applications of signal detection in surveillance and remote sensing radar systems.\",\"PeriodicalId\":448587,\"journal\":{\"name\":\"2007 European Conference on Wireless Technologies\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 European Conference on Wireless Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECWT.2007.4403981\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 European Conference on Wireless Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECWT.2007.4403981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种适用于有限先验信息条件下雷达信号检测算法的设计方法。这个问题被表述为对密度函数的假设进行检验。提出并研究了一种允许在实际算法中采用置换检验的新方法。所开发的新的自适应算法基于密度函数的非参数核估计。研究结果可为信号检测在监视和遥感雷达系统中的应用提供参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Signal Detection Algorithms Based on Non-Parametric Estimates of Density Function
This paper presents a novel approach to design radar signal detection algorithms that are applicable when a priori information is limited. The problem is formulated as testing hypothesis on the kind of density function. A novel method that allows to adopt permutation test in a practical algorithm is suggested and researched. The developed new adaptive algorithm is based on non-parametric kernel estimates of the density function. The results are useful for applications of signal detection in surveillance and remote sensing radar systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信