MUSIC与线性采样成像性能的比较

Sangwoo Kang, W. Park
{"title":"MUSIC与线性采样成像性能的比较","authors":"Sangwoo Kang, W. Park","doi":"10.1109/CISP-BMEI.2016.7852916","DOIUrl":null,"url":null,"abstract":"The MUltiple SIgnal Classification - MUSIC - algorithm and the Linear Sampling - LS - method are fast, stable, and effective non-iterative imaging techniques in inverse scattering problem. In fact, some previous studies indicated that the linear sampling method is an extended version of MUSIC. However, numerical results in support of this assertion have not been provided. In this contribution, we compare the imaging performance of MUSIC with that of the LS method with noisy data and underpin the above assertion.","PeriodicalId":275095,"journal":{"name":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparing the imaging performance of MUSIC and Linear Sampling method\",\"authors\":\"Sangwoo Kang, W. Park\",\"doi\":\"10.1109/CISP-BMEI.2016.7852916\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The MUltiple SIgnal Classification - MUSIC - algorithm and the Linear Sampling - LS - method are fast, stable, and effective non-iterative imaging techniques in inverse scattering problem. In fact, some previous studies indicated that the linear sampling method is an extended version of MUSIC. However, numerical results in support of this assertion have not been provided. In this contribution, we compare the imaging performance of MUSIC with that of the LS method with noisy data and underpin the above assertion.\",\"PeriodicalId\":275095,\"journal\":{\"name\":\"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISP-BMEI.2016.7852916\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 9th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2016.7852916","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

多信号分类- MUSIC -算法和线性采样- LS -方法是快速、稳定、有效的反散射成像技术。事实上,之前的一些研究表明,线性抽样方法是MUSIC的扩展版本。但是,没有提供支持这一断言的数值结果。在这篇文章中,我们比较了MUSIC与LS方法在噪声数据下的成像性能,并支持了上述断言。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Comparing the imaging performance of MUSIC and Linear Sampling method
The MUltiple SIgnal Classification - MUSIC - algorithm and the Linear Sampling - LS - method are fast, stable, and effective non-iterative imaging techniques in inverse scattering problem. In fact, some previous studies indicated that the linear sampling method is an extended version of MUSIC. However, numerical results in support of this assertion have not been provided. In this contribution, we compare the imaging performance of MUSIC with that of the LS method with noisy data and underpin the above assertion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信