基于灰度分布特性和上下文的合成孔径雷达图像分类系统

A. Frery, C.daC.F. Yanasse, P. R. Vieira, S.J.S. Santanna, C. Rennó
{"title":"基于灰度分布特性和上下文的合成孔径雷达图像分类系统","authors":"A. Frery, C.daC.F. Yanasse, P. R. Vieira, S.J.S. Santanna, C. Rennó","doi":"10.1109/SIGRA.1997.625180","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to present a system for the analysis and classification of Synthetic Aperture Radar (SAR) images. This system, unlike most of its competitors, allows a careful modeling of the statistical properties of the data beyond the usual Gaussian hypothesis. The modeling tools include basic descriptive measures and the choice of suited distributions, through goodness-of-fit tests, to model the data. The classification tools offer the choice between pointwise and contextual (Markovian) techniques, and the quantitative assessment of the quality of the results. The system is goal-driven, and its interfaces are solely based on pull-down menus; the user is prompted with the correct sequence of operations, whenever an invalid option is invoked. An example of the use of this system for the classification of a SAR image is presented.","PeriodicalId":445648,"journal":{"name":"Proceedings X Brazilian Symposium on Computer Graphics and Image Processing","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"A user-friendly system for synthetic aperture radar image classification based on grayscale distributional properties and context\",\"authors\":\"A. Frery, C.daC.F. Yanasse, P. R. Vieira, S.J.S. Santanna, C. Rennó\",\"doi\":\"10.1109/SIGRA.1997.625180\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to present a system for the analysis and classification of Synthetic Aperture Radar (SAR) images. This system, unlike most of its competitors, allows a careful modeling of the statistical properties of the data beyond the usual Gaussian hypothesis. The modeling tools include basic descriptive measures and the choice of suited distributions, through goodness-of-fit tests, to model the data. The classification tools offer the choice between pointwise and contextual (Markovian) techniques, and the quantitative assessment of the quality of the results. The system is goal-driven, and its interfaces are solely based on pull-down menus; the user is prompted with the correct sequence of operations, whenever an invalid option is invoked. An example of the use of this system for the classification of a SAR image is presented.\",\"PeriodicalId\":445648,\"journal\":{\"name\":\"Proceedings X Brazilian Symposium on Computer Graphics and Image Processing\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings X Brazilian Symposium on Computer Graphics and Image Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SIGRA.1997.625180\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings X Brazilian Symposium on Computer Graphics and Image Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIGRA.1997.625180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

本文的目的是提出一个用于合成孔径雷达(SAR)图像分析与分类的系统。与大多数竞争对手不同的是,该系统允许对数据的统计特性进行仔细的建模,超出通常的高斯假设。建模工具包括基本的描述性度量和选择合适的分布,通过拟合优度检验来对数据建模。分类工具提供了点和上下文(马尔可夫)技术之间的选择,以及结果质量的定量评估。该系统是目标驱动的,其界面完全基于下拉菜单;无论何时调用无效选项,都会向用户提示正确的操作顺序。最后给出了一个应用该系统对SAR图像进行分类的实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A user-friendly system for synthetic aperture radar image classification based on grayscale distributional properties and context
The purpose of this paper is to present a system for the analysis and classification of Synthetic Aperture Radar (SAR) images. This system, unlike most of its competitors, allows a careful modeling of the statistical properties of the data beyond the usual Gaussian hypothesis. The modeling tools include basic descriptive measures and the choice of suited distributions, through goodness-of-fit tests, to model the data. The classification tools offer the choice between pointwise and contextual (Markovian) techniques, and the quantitative assessment of the quality of the results. The system is goal-driven, and its interfaces are solely based on pull-down menus; the user is prompted with the correct sequence of operations, whenever an invalid option is invoked. An example of the use of this system for the classification of a SAR image is presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信