{"title":"识别相关事件内容,进行实时事件检测","authors":"Xinyue Wang, L. Tokarchuk, S. Poslad","doi":"10.1109/ASONAM.2014.6921616","DOIUrl":null,"url":null,"abstract":"A variety of event detection algorithms for microblog services have been proposed, but their accuracy relies on the microblog feeds they analyse. Existing research explores datasets that are collected using either a set of manually predefined terms or information from external sources. These methods fail to provide comprehensive and quality feeds for real-time event detection. In this paper, we present a novel adaptive keyword identification approach to retrieve a greater amount of event relevant content. This approach continuously monitors emerging hashtags and rates them by their similarity to specific pre-defined event hashtags using TF-IDF vectors. Top rated emerging hashtags are added as filter criteria in real time. By comparing our proposed approach, called CETRe (Content-based Event Tweet Retrieval) with an existing baseline approach applied to real-world events, we show that CETRe not only identifies event topics and contents, but also enables better event detection.","PeriodicalId":143584,"journal":{"name":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Identifying relevant event content for real-time event detection\",\"authors\":\"Xinyue Wang, L. Tokarchuk, S. Poslad\",\"doi\":\"10.1109/ASONAM.2014.6921616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A variety of event detection algorithms for microblog services have been proposed, but their accuracy relies on the microblog feeds they analyse. Existing research explores datasets that are collected using either a set of manually predefined terms or information from external sources. These methods fail to provide comprehensive and quality feeds for real-time event detection. In this paper, we present a novel adaptive keyword identification approach to retrieve a greater amount of event relevant content. This approach continuously monitors emerging hashtags and rates them by their similarity to specific pre-defined event hashtags using TF-IDF vectors. Top rated emerging hashtags are added as filter criteria in real time. By comparing our proposed approach, called CETRe (Content-based Event Tweet Retrieval) with an existing baseline approach applied to real-world events, we show that CETRe not only identifies event topics and contents, but also enables better event detection.\",\"PeriodicalId\":143584,\"journal\":{\"name\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASONAM.2014.6921616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASONAM.2014.6921616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Identifying relevant event content for real-time event detection
A variety of event detection algorithms for microblog services have been proposed, but their accuracy relies on the microblog feeds they analyse. Existing research explores datasets that are collected using either a set of manually predefined terms or information from external sources. These methods fail to provide comprehensive and quality feeds for real-time event detection. In this paper, we present a novel adaptive keyword identification approach to retrieve a greater amount of event relevant content. This approach continuously monitors emerging hashtags and rates them by their similarity to specific pre-defined event hashtags using TF-IDF vectors. Top rated emerging hashtags are added as filter criteria in real time. By comparing our proposed approach, called CETRe (Content-based Event Tweet Retrieval) with an existing baseline approach applied to real-world events, we show that CETRe not only identifies event topics and contents, but also enables better event detection.