多维网格的摄动法隐私增强

Ilker Ilter, S. Turgay
{"title":"多维网格的摄动法隐私增强","authors":"Ilker Ilter, S. Turgay","doi":"10.23977/jaip.2023.060405","DOIUrl":null,"url":null,"abstract":": With the development of technology, the use of big data is spreading at an increasing rate. The issues of storing, analysing and securing data have brought along the methods that need to be developed. Ensuring data privacy and data security is the case of partial separation and processing of data with the perturbation method of data with the block chain approach. Within the scope of this study, data analysis performed using normalization, geometric rotation, linear regression and scalar data multiplication and comparative classification in precision data mining.","PeriodicalId":293823,"journal":{"name":"Journal of Artificial Intelligence Practice","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Privacy Enhancement with Perturbation Method for Multidimensional Grid\",\"authors\":\"Ilker Ilter, S. Turgay\",\"doi\":\"10.23977/jaip.2023.060405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": With the development of technology, the use of big data is spreading at an increasing rate. The issues of storing, analysing and securing data have brought along the methods that need to be developed. Ensuring data privacy and data security is the case of partial separation and processing of data with the perturbation method of data with the block chain approach. Within the scope of this study, data analysis performed using normalization, geometric rotation, linear regression and scalar data multiplication and comparative classification in precision data mining.\",\"PeriodicalId\":293823,\"journal\":{\"name\":\"Journal of Artificial Intelligence Practice\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Artificial Intelligence Practice\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23977/jaip.2023.060405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Practice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23977/jaip.2023.060405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着科技的发展,大数据的应用正以越来越快的速度蔓延。存储、分析和保护数据的问题带来了需要开发的方法。确保数据隐私和数据安全是用区块链方法对数据进行局部分离和处理的情况。在本研究的范围内,使用归一化、几何旋转、线性回归和精确数据挖掘中的标量数据乘法和比较分类进行数据分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Privacy Enhancement with Perturbation Method for Multidimensional Grid
: With the development of technology, the use of big data is spreading at an increasing rate. The issues of storing, analysing and securing data have brought along the methods that need to be developed. Ensuring data privacy and data security is the case of partial separation and processing of data with the perturbation method of data with the block chain approach. Within the scope of this study, data analysis performed using normalization, geometric rotation, linear regression and scalar data multiplication and comparative classification in precision data mining.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信