一种估计非线性系统稳定区域及设定稳定时间边界的计算机算法

R. Hilton
{"title":"一种估计非线性系统稳定区域及设定稳定时间边界的计算机算法","authors":"R. Hilton","doi":"10.1109/AEROCS.1993.720883","DOIUrl":null,"url":null,"abstract":"This paper describes a computer algorithm which accepts nonlinear system differential equations and from them estimates the region of aymptotic stability as well as a set of upper and lower bounds for the amount of time a state may exist in each of a set of subregions. These results are produced by way of a Lyapunov function approximated as a numerical solution of Zubov's equation for the given system.","PeriodicalId":170527,"journal":{"name":"Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Computer Algorithm to Estimate Stability Regions Iind to Place Bounds on Settling Times for Nonlinear Systems\",\"authors\":\"R. Hilton\",\"doi\":\"10.1109/AEROCS.1993.720883\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a computer algorithm which accepts nonlinear system differential equations and from them estimates the region of aymptotic stability as well as a set of upper and lower bounds for the amount of time a state may exist in each of a set of subregions. These results are produced by way of a Lyapunov function approximated as a numerical solution of Zubov's equation for the given system.\",\"PeriodicalId\":170527,\"journal\":{\"name\":\"Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AEROCS.1993.720883\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. The First IEEE Regional Conference on Aerospace Control Systems,","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AEROCS.1993.720883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种接受非线性系统微分方程的计算机算法,并从该算法中估计出系统的渐近稳定区域以及一组子区域中状态存在时间的上界和下界。这些结果是由李雅普诺夫函数近似为给定系统的Zubov方程的数值解产生的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Computer Algorithm to Estimate Stability Regions Iind to Place Bounds on Settling Times for Nonlinear Systems
This paper describes a computer algorithm which accepts nonlinear system differential equations and from them estimates the region of aymptotic stability as well as a set of upper and lower bounds for the amount of time a state may exist in each of a set of subregions. These results are produced by way of a Lyapunov function approximated as a numerical solution of Zubov's equation for the given system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信