资源约束下项目调度的简单双ramp算法

ACM SE '10 Pub Date : 2010-04-15 DOI:10.1145/1900008.1900097
C. Riley, C. Rego, Haitao Li
{"title":"资源约束下项目调度的简单双ramp算法","authors":"C. Riley, C. Rego, Haitao Li","doi":"10.1145/1900008.1900097","DOIUrl":null,"url":null,"abstract":"A Relaxation Adaptive Memory Programming (RAMP) algorithm is developed to solve large-scale resource constrained project scheduling problems (RCPSP). The RAMP algorithm presented here takes advantage of a cross-parametric relaxation and extends a recent approach that casts the relaxed problem as a minimum cut problem. Computational results on a classical set of benchmark problems show that even a relatively simple implementation of the RAMP algorithm can find optimal or near-optimal solutions for a large set of those instances.","PeriodicalId":333104,"journal":{"name":"ACM SE '10","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A simple dual-RAMP algorithm for resource constraint project scheduling\",\"authors\":\"C. Riley, C. Rego, Haitao Li\",\"doi\":\"10.1145/1900008.1900097\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A Relaxation Adaptive Memory Programming (RAMP) algorithm is developed to solve large-scale resource constrained project scheduling problems (RCPSP). The RAMP algorithm presented here takes advantage of a cross-parametric relaxation and extends a recent approach that casts the relaxed problem as a minimum cut problem. Computational results on a classical set of benchmark problems show that even a relatively simple implementation of the RAMP algorithm can find optimal or near-optimal solutions for a large set of those instances.\",\"PeriodicalId\":333104,\"journal\":{\"name\":\"ACM SE '10\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SE '10\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1900008.1900097\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SE '10","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1900008.1900097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对大规模资源约束项目调度问题,提出了一种松弛自适应记忆规划(RAMP)算法。本文提出的RAMP算法利用了交叉参数松弛,并扩展了将松弛问题转换为最小切割问题的最新方法。一组经典基准问题的计算结果表明,即使RAMP算法的一个相对简单的实现也可以为大量这些实例找到最优或接近最优的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A simple dual-RAMP algorithm for resource constraint project scheduling
A Relaxation Adaptive Memory Programming (RAMP) algorithm is developed to solve large-scale resource constrained project scheduling problems (RCPSP). The RAMP algorithm presented here takes advantage of a cross-parametric relaxation and extends a recent approach that casts the relaxed problem as a minimum cut problem. Computational results on a classical set of benchmark problems show that even a relatively simple implementation of the RAMP algorithm can find optimal or near-optimal solutions for a large set of those instances.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信