H. Surmann, Tiffany Kaiser, Artur Leinweber, Gerhard Senkowski, Dominik Slomma, Marchell E. Thurow
{"title":"用于室内搜索和救援任务的小型商用无人机","authors":"H. Surmann, Tiffany Kaiser, Artur Leinweber, Gerhard Senkowski, Dominik Slomma, Marchell E. Thurow","doi":"10.1109/ICARA51699.2021.9376551","DOIUrl":null,"url":null,"abstract":"This technical report is about the architecture and integration of very small commercial UAVs (< 40 cm diagonal) in indoor Search and Rescue missions. One UAV is manually controlled by only one single human operator delivering live video streams and image series for later 3D scene modelling and inspection. In order to assist the operator who has to simultaneously observe the environment and navigate through it we use multiple deep neural networks to provide guided autonomy, automatic object detection and classification and local 3D scene modelling. Our methods help to reduce the cognitive load of the operator. We describe a framework for quick integration of new methods from the field of Deep Learning, enabling for rapid evaluation in real scenarios, including the interaction of methods.","PeriodicalId":183788,"journal":{"name":"2021 7th International Conference on Automation, Robotics and Applications (ICARA)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Small Commercial UAVs for Indoor Search and Rescue Missions\",\"authors\":\"H. Surmann, Tiffany Kaiser, Artur Leinweber, Gerhard Senkowski, Dominik Slomma, Marchell E. Thurow\",\"doi\":\"10.1109/ICARA51699.2021.9376551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This technical report is about the architecture and integration of very small commercial UAVs (< 40 cm diagonal) in indoor Search and Rescue missions. One UAV is manually controlled by only one single human operator delivering live video streams and image series for later 3D scene modelling and inspection. In order to assist the operator who has to simultaneously observe the environment and navigate through it we use multiple deep neural networks to provide guided autonomy, automatic object detection and classification and local 3D scene modelling. Our methods help to reduce the cognitive load of the operator. We describe a framework for quick integration of new methods from the field of Deep Learning, enabling for rapid evaluation in real scenarios, including the interaction of methods.\",\"PeriodicalId\":183788,\"journal\":{\"name\":\"2021 7th International Conference on Automation, Robotics and Applications (ICARA)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Automation, Robotics and Applications (ICARA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICARA51699.2021.9376551\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Automation, Robotics and Applications (ICARA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARA51699.2021.9376551","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Small Commercial UAVs for Indoor Search and Rescue Missions
This technical report is about the architecture and integration of very small commercial UAVs (< 40 cm diagonal) in indoor Search and Rescue missions. One UAV is manually controlled by only one single human operator delivering live video streams and image series for later 3D scene modelling and inspection. In order to assist the operator who has to simultaneously observe the environment and navigate through it we use multiple deep neural networks to provide guided autonomy, automatic object detection and classification and local 3D scene modelling. Our methods help to reduce the cognitive load of the operator. We describe a framework for quick integration of new methods from the field of Deep Learning, enabling for rapid evaluation in real scenarios, including the interaction of methods.