基于RGB和深度流的连体神经网络的孤立符号识别

Anil Osman Tur, H. Keles
{"title":"基于RGB和深度流的连体神经网络的孤立符号识别","authors":"Anil Osman Tur, H. Keles","doi":"10.1109/EUROCON.2019.8861945","DOIUrl":null,"url":null,"abstract":"Sign recognition is a challenging problem due to high variance of the signs among different signers and multiple modalities of the input information. In addition, the challenges that exist in the action classification problems in computer vision are similar in this domain too, such as variations in illumination and background. In this work, we propose a Siamese Neural Network (SNN) architecture that is used to extract features from the RGB and the depth streams of a sign frame in parallel. We use a pretrained model for the SNN without any finetuning to our training data. We then apply global feature pooling to the depth and color features that the SNN generates and feed the concatenation of the selected features to a recurrent neural network (RNN) to discriminate the signs. We trained our model parameters with the Montalbano dataset and achieved 93.19% test accuracy with ResNet-50 and 91.61% with VGG-16 Network Models.","PeriodicalId":232097,"journal":{"name":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Isolated Sign Recognition with a Siamese Neural Network of RGB and Depth Streams\",\"authors\":\"Anil Osman Tur, H. Keles\",\"doi\":\"10.1109/EUROCON.2019.8861945\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sign recognition is a challenging problem due to high variance of the signs among different signers and multiple modalities of the input information. In addition, the challenges that exist in the action classification problems in computer vision are similar in this domain too, such as variations in illumination and background. In this work, we propose a Siamese Neural Network (SNN) architecture that is used to extract features from the RGB and the depth streams of a sign frame in parallel. We use a pretrained model for the SNN without any finetuning to our training data. We then apply global feature pooling to the depth and color features that the SNN generates and feed the concatenation of the selected features to a recurrent neural network (RNN) to discriminate the signs. We trained our model parameters with the Montalbano dataset and achieved 93.19% test accuracy with ResNet-50 and 91.61% with VGG-16 Network Models.\",\"PeriodicalId\":232097,\"journal\":{\"name\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2019 -18th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON.2019.8861945\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2019 -18th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON.2019.8861945","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

符号识别是一个具有挑战性的问题,因为不同的签名者之间的符号差异很大,输入信息的形式也多种多样。此外,计算机视觉中存在的动作分类问题的挑战也与此领域相似,例如光照和背景的变化。在这项工作中,我们提出了一种Siamese神经网络(SNN)架构,用于并行地从标志帧的RGB和深度流中提取特征。我们对SNN使用预训练模型,而不需要对我们的训练数据进行任何微调。然后,我们将全局特征池应用于SNN生成的深度和颜色特征,并将所选特征的连接馈送到循环神经网络(RNN)以区分符号。我们使用Montalbano数据集训练模型参数,使用ResNet-50和VGG-16网络模型的测试准确率分别达到93.19%和91.61%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolated Sign Recognition with a Siamese Neural Network of RGB and Depth Streams
Sign recognition is a challenging problem due to high variance of the signs among different signers and multiple modalities of the input information. In addition, the challenges that exist in the action classification problems in computer vision are similar in this domain too, such as variations in illumination and background. In this work, we propose a Siamese Neural Network (SNN) architecture that is used to extract features from the RGB and the depth streams of a sign frame in parallel. We use a pretrained model for the SNN without any finetuning to our training data. We then apply global feature pooling to the depth and color features that the SNN generates and feed the concatenation of the selected features to a recurrent neural network (RNN) to discriminate the signs. We trained our model parameters with the Montalbano dataset and achieved 93.19% test accuracy with ResNet-50 and 91.61% with VGG-16 Network Models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信