破坏的风险

Simon C. Smith, A. Timmermann
{"title":"破坏的风险","authors":"Simon C. Smith, A. Timmermann","doi":"10.2139/ssrn.3238226","DOIUrl":null,"url":null,"abstract":"\n We develop a new approach to modeling and predicting stock returns in the presence of breaks that simultaneously affect a large cross-section of stocks. Exploiting information in the cross-section enables us to detect breaks in return prediction models with little delay and to generate out-of-sample return forecasts that are significantly more accurate than those from existing approaches. To identify the economic sources of breaks, we explore the asset pricing restrictions implied by a present value model which links breaks in return predictability to breaks in the cash flow growth and discount rate processes.","PeriodicalId":170198,"journal":{"name":"ERN: Forecasting Techniques (Topic)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Break Risk\",\"authors\":\"Simon C. Smith, A. Timmermann\",\"doi\":\"10.2139/ssrn.3238226\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We develop a new approach to modeling and predicting stock returns in the presence of breaks that simultaneously affect a large cross-section of stocks. Exploiting information in the cross-section enables us to detect breaks in return prediction models with little delay and to generate out-of-sample return forecasts that are significantly more accurate than those from existing approaches. To identify the economic sources of breaks, we explore the asset pricing restrictions implied by a present value model which links breaks in return predictability to breaks in the cash flow growth and discount rate processes.\",\"PeriodicalId\":170198,\"journal\":{\"name\":\"ERN: Forecasting Techniques (Topic)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Forecasting Techniques (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3238226\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Forecasting Techniques (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3238226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

我们开发了一种新的方法来建模和预测股票收益,同时影响一个大的股票的横截面存在中断。利用横截面中的信息使我们能够以很小的延迟检测回报预测模型中的中断,并生成比现有方法更准确的样本外回报预测。为了确定断裂的经济来源,我们探讨了现值模型所隐含的资产定价限制,该模型将回报可预测性的断裂与现金流增长和贴现率过程的断裂联系起来。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Break Risk
We develop a new approach to modeling and predicting stock returns in the presence of breaks that simultaneously affect a large cross-section of stocks. Exploiting information in the cross-section enables us to detect breaks in return prediction models with little delay and to generate out-of-sample return forecasts that are significantly more accurate than those from existing approaches. To identify the economic sources of breaks, we explore the asset pricing restrictions implied by a present value model which links breaks in return predictability to breaks in the cash flow growth and discount rate processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信