{"title":"低压电磁能量采集器稳压升压阶段优化","authors":"H. Uluşan, Ö. Zorlu, H. Kulah, A. Muhtaroğlu","doi":"10.1109/ICEAC.2015.7352198","DOIUrl":null,"url":null,"abstract":"This paper presents a performance enhancement feature for a novel power management circuit to generate 1.8 V from the low DC voltage rectified at the output of the vibration-based electromagnetic (EM) energy harvesters. The proposed 180 nm circuit utilizes a low voltage charge pump based boost converter with variable output-stages, and an autonomous regulator circuit with negative feedback topology. 2 and 3 stage charge pump options in the variable stage configuration has been validated to extend the supported input voltage range at the same load, or alternatively maintain higher efficiency operation at a higher load range. The simulation results showed that under no-load condition the output voltage reached to 1.8 V for input voltage of 0.65 V and 0.48 V with 2 and 3 stage outputs, respectively. The power conversion efficiency of the power management circuit can be kept stable around 55% by switching from 2 to 3 stages after 3.5 μA.","PeriodicalId":334594,"journal":{"name":"5th International Conference on Energy Aware Computing Systems & Applications","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stage optimization in regulated step-up for low voltage electromagnetic energy harvesters\",\"authors\":\"H. Uluşan, Ö. Zorlu, H. Kulah, A. Muhtaroğlu\",\"doi\":\"10.1109/ICEAC.2015.7352198\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a performance enhancement feature for a novel power management circuit to generate 1.8 V from the low DC voltage rectified at the output of the vibration-based electromagnetic (EM) energy harvesters. The proposed 180 nm circuit utilizes a low voltage charge pump based boost converter with variable output-stages, and an autonomous regulator circuit with negative feedback topology. 2 and 3 stage charge pump options in the variable stage configuration has been validated to extend the supported input voltage range at the same load, or alternatively maintain higher efficiency operation at a higher load range. The simulation results showed that under no-load condition the output voltage reached to 1.8 V for input voltage of 0.65 V and 0.48 V with 2 and 3 stage outputs, respectively. The power conversion efficiency of the power management circuit can be kept stable around 55% by switching from 2 to 3 stages after 3.5 μA.\",\"PeriodicalId\":334594,\"journal\":{\"name\":\"5th International Conference on Energy Aware Computing Systems & Applications\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"5th International Conference on Energy Aware Computing Systems & Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEAC.2015.7352198\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Energy Aware Computing Systems & Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEAC.2015.7352198","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Stage optimization in regulated step-up for low voltage electromagnetic energy harvesters
This paper presents a performance enhancement feature for a novel power management circuit to generate 1.8 V from the low DC voltage rectified at the output of the vibration-based electromagnetic (EM) energy harvesters. The proposed 180 nm circuit utilizes a low voltage charge pump based boost converter with variable output-stages, and an autonomous regulator circuit with negative feedback topology. 2 and 3 stage charge pump options in the variable stage configuration has been validated to extend the supported input voltage range at the same load, or alternatively maintain higher efficiency operation at a higher load range. The simulation results showed that under no-load condition the output voltage reached to 1.8 V for input voltage of 0.65 V and 0.48 V with 2 and 3 stage outputs, respectively. The power conversion efficiency of the power management circuit can be kept stable around 55% by switching from 2 to 3 stages after 3.5 μA.