DPFS: dpu驱动的文件系统虚拟化

Peter-Jan Gootzen, Jonas Pfefferle, R. Stoica, A. Trivedi
{"title":"DPFS: dpu驱动的文件系统虚拟化","authors":"Peter-Jan Gootzen, Jonas Pfefferle, R. Stoica, A. Trivedi","doi":"10.1145/3579370.3594769","DOIUrl":null,"url":null,"abstract":"As we move towards hyper-converged cloud solutions, the efficiency and overheads of distributed file systems at the cloud tenant side (i.e., client) become of paramount importance. Often, the clientside driver of a cloud file system is complex and CPU intensive, deeply coupled with the backend implementation, and requires optimizing multiple intrusive knobs. In this work, we propose to decouple the file system client from its backend implementation by virtualizing it with an off-the-shelf DPU using the Linux virtio-fs software stack. The decoupling allows us to offload the file system client execution to a DPU, which is managed and optimized by the cloud provider, while freeing the host CPU cycles. DPFS, our proposed framework, is 4.4× more host CPU efficient per I/O, delivers comparable performance to a tenant with zero-configuration and without modification of their host software stack, while allowing workload and hardware specific backend optimizations. The DPFS framework and its artifacts are publically available at https://github.com/IBM/DPFS.","PeriodicalId":180024,"journal":{"name":"Proceedings of the 16th ACM International Conference on Systems and Storage","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"DPFS: DPU-Powered File System Virtualization\",\"authors\":\"Peter-Jan Gootzen, Jonas Pfefferle, R. Stoica, A. Trivedi\",\"doi\":\"10.1145/3579370.3594769\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"As we move towards hyper-converged cloud solutions, the efficiency and overheads of distributed file systems at the cloud tenant side (i.e., client) become of paramount importance. Often, the clientside driver of a cloud file system is complex and CPU intensive, deeply coupled with the backend implementation, and requires optimizing multiple intrusive knobs. In this work, we propose to decouple the file system client from its backend implementation by virtualizing it with an off-the-shelf DPU using the Linux virtio-fs software stack. The decoupling allows us to offload the file system client execution to a DPU, which is managed and optimized by the cloud provider, while freeing the host CPU cycles. DPFS, our proposed framework, is 4.4× more host CPU efficient per I/O, delivers comparable performance to a tenant with zero-configuration and without modification of their host software stack, while allowing workload and hardware specific backend optimizations. The DPFS framework and its artifacts are publically available at https://github.com/IBM/DPFS.\",\"PeriodicalId\":180024,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Systems and Storage\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Systems and Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3579370.3594769\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Systems and Storage","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3579370.3594769","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

当我们转向超融合云解决方案时,云租户端(即客户端)分布式文件系统的效率和开销变得至关重要。通常,云文件系统的客户端驱动程序是复杂且CPU密集型的,与后端实现紧密耦合,并且需要优化多个侵入性旋涡。在这项工作中,我们建议通过使用Linux virtual -fs软件堆栈使用现成的DPU对其进行虚拟化,从而将文件系统客户机与其后端实现解耦。这种解耦允许我们将文件系统客户端的执行卸载到一个由云提供商管理和优化的DPU上,同时释放主机CPU周期。我们提出的框架DPFS在每个I/O上的主机CPU效率要高4.4倍,可以提供与租户相当的性能,无需配置,无需修改其主机软件堆栈,同时允许工作负载和硬件特定的后端优化。DPFS框架及其构件可在https://github.com/IBM/DPFS上公开获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
DPFS: DPU-Powered File System Virtualization
As we move towards hyper-converged cloud solutions, the efficiency and overheads of distributed file systems at the cloud tenant side (i.e., client) become of paramount importance. Often, the clientside driver of a cloud file system is complex and CPU intensive, deeply coupled with the backend implementation, and requires optimizing multiple intrusive knobs. In this work, we propose to decouple the file system client from its backend implementation by virtualizing it with an off-the-shelf DPU using the Linux virtio-fs software stack. The decoupling allows us to offload the file system client execution to a DPU, which is managed and optimized by the cloud provider, while freeing the host CPU cycles. DPFS, our proposed framework, is 4.4× more host CPU efficient per I/O, delivers comparable performance to a tenant with zero-configuration and without modification of their host software stack, while allowing workload and hardware specific backend optimizations. The DPFS framework and its artifacts are publically available at https://github.com/IBM/DPFS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信