一些新的脊回归估计的性能

M. Suhail, S. Chand
{"title":"一些新的脊回归估计的性能","authors":"M. Suhail, S. Chand","doi":"10.1109/MACS48846.2019.9024784","DOIUrl":null,"url":null,"abstract":"Ridge regression is used to circumvent the effect of multicollinearity. Ridge parameter plays an important role in reducing the variance of ridge estimators. In this paper, we consider some existing estimators and propose some new ridge regression estimators for linear regression models. The performance of estimators is evaluated through a Monte Carlo simulation study. Based on mean square error criterion, our proposed estimators show some better performance as compared to other considered ridge estimators. An application is also given to illustrate the simulation results.","PeriodicalId":434612,"journal":{"name":"2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Performance of some new ridge regression estimators\",\"authors\":\"M. Suhail, S. Chand\",\"doi\":\"10.1109/MACS48846.2019.9024784\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ridge regression is used to circumvent the effect of multicollinearity. Ridge parameter plays an important role in reducing the variance of ridge estimators. In this paper, we consider some existing estimators and propose some new ridge regression estimators for linear regression models. The performance of estimators is evaluated through a Monte Carlo simulation study. Based on mean square error criterion, our proposed estimators show some better performance as compared to other considered ridge estimators. An application is also given to illustrate the simulation results.\",\"PeriodicalId\":434612,\"journal\":{\"name\":\"2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MACS48846.2019.9024784\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 13th International Conference on Mathematics, Actuarial Science, Computer Science and Statistics (MACS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MACS48846.2019.9024784","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

摘要

脊回归是用来避免多重共线性的影响。岭参数在减小岭估计的方差方面起着重要的作用。本文考虑了已有的一些估计量,并对线性回归模型提出了一些新的脊回归估计量。通过蒙特卡罗仿真研究对估计器的性能进行了评价。基于均方误差准则,与其他脊估计相比,我们提出的估计具有更好的性能。最后给出了一个应用程序来说明仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance of some new ridge regression estimators
Ridge regression is used to circumvent the effect of multicollinearity. Ridge parameter plays an important role in reducing the variance of ridge estimators. In this paper, we consider some existing estimators and propose some new ridge regression estimators for linear regression models. The performance of estimators is evaluated through a Monte Carlo simulation study. Based on mean square error criterion, our proposed estimators show some better performance as compared to other considered ridge estimators. An application is also given to illustrate the simulation results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信