一种基于神经网络的非线性PID控制器,采用PID梯度训练

Yonghong Tan, Xuanju Dang, A. van Cauwenberghe
{"title":"一种基于神经网络的非线性PID控制器,采用PID梯度训练","authors":"Yonghong Tan, Xuanju Dang, A. van Cauwenberghe","doi":"10.1109/ISIC.1999.796625","DOIUrl":null,"url":null,"abstract":"A nonlinear PID controller is proposed to handle some nonlinear process control problems. In this scheme, the controller uses the system error, the integral of the system error, and the derivative of the system error as its inputs but the mapping from the inputs to the output is nonlinear. The corresponding nonlinear mapping may be specified based on the control requirement. The NPIDC strategy is realized using neural networks. For online training of the neural network based NPIDC, a PID gradient descent optimizing algorithm with momentum term is proposed. Then, the convergent characteristic of the algorithm is presented. Finally, a simulation study of applying the neural NPIDC strategy to a continuous-stirred-tank-reactor and a van de Vusse reactor is illustrated.","PeriodicalId":300130,"journal":{"name":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A neural network based nonlinear PID controller using PID gradient training\",\"authors\":\"Yonghong Tan, Xuanju Dang, A. van Cauwenberghe\",\"doi\":\"10.1109/ISIC.1999.796625\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A nonlinear PID controller is proposed to handle some nonlinear process control problems. In this scheme, the controller uses the system error, the integral of the system error, and the derivative of the system error as its inputs but the mapping from the inputs to the output is nonlinear. The corresponding nonlinear mapping may be specified based on the control requirement. The NPIDC strategy is realized using neural networks. For online training of the neural network based NPIDC, a PID gradient descent optimizing algorithm with momentum term is proposed. Then, the convergent characteristic of the algorithm is presented. Finally, a simulation study of applying the neural NPIDC strategy to a continuous-stirred-tank-reactor and a van de Vusse reactor is illustrated.\",\"PeriodicalId\":300130,\"journal\":{\"name\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIC.1999.796625\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1999 IEEE International Symposium on Intelligent Control Intelligent Systems and Semiotics (Cat. No.99CH37014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIC.1999.796625","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

针对一些非线性过程控制问题,提出了一种非线性PID控制器。在该方案中,控制器使用系统误差、系统误差的积分和系统误差的导数作为其输入,但从输入到输出的映射是非线性的。可根据控制要求指定相应的非线性映射。NPIDC策略采用神经网络实现。针对基于NPIDC的神经网络在线训练问题,提出了一种带动量项的PID梯度下降优化算法。然后,给出了该算法的收敛特性。最后,对连续搅拌罐式反应器和van de Vusse反应器进行了神经网络NPIDC策略的仿真研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A neural network based nonlinear PID controller using PID gradient training
A nonlinear PID controller is proposed to handle some nonlinear process control problems. In this scheme, the controller uses the system error, the integral of the system error, and the derivative of the system error as its inputs but the mapping from the inputs to the output is nonlinear. The corresponding nonlinear mapping may be specified based on the control requirement. The NPIDC strategy is realized using neural networks. For online training of the neural network based NPIDC, a PID gradient descent optimizing algorithm with momentum term is proposed. Then, the convergent characteristic of the algorithm is presented. Finally, a simulation study of applying the neural NPIDC strategy to a continuous-stirred-tank-reactor and a van de Vusse reactor is illustrated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信