对抗电视观看行为中的情境偏见:在电视推荐中引入社会趋势作为外部情境因素

Felix Lorenz, Jing Yuan, A. Lommatzsch, Mu Mu, N. Race, F. Hopfgartner, S. Albayrak
{"title":"对抗电视观看行为中的情境偏见:在电视推荐中引入社会趋势作为外部情境因素","authors":"Felix Lorenz, Jing Yuan, A. Lommatzsch, Mu Mu, N. Race, F. Hopfgartner, S. Albayrak","doi":"10.1145/3077548.3077552","DOIUrl":null,"url":null,"abstract":"Context-awareness has become a critical factor in improving the predictions of user interest in modern online TV recommendation systems. In addition to individual user preferences, existing context-aware approaches such as tensor factorization incorporate system-level contextual bias to increase predicting accuracy. We analyzed a user interaction dataset from a WebTV platform, and identified that such contextual bias creates a skewed selection of recommended programs which ultimately locks users in a filter bubble. To address this issue, we introduce the Twitter social stream as a source of external context to extend the choice with items related to social media events. We apply two trend indicators, Trend Momentum and SigniScore, to the Twitter histories of relevant programs. The evaluation reveals that Trend Momentum outperforms SigniScore and signalizes 96% of all peaks ahead of time regarding the selected candidate program titles.","PeriodicalId":314992,"journal":{"name":"Proceedings of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video","volume":"224 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Countering Contextual Bias in TV Watching Behavior: Introducing Social Trend as External Contextual Factor in TV Recommenders\",\"authors\":\"Felix Lorenz, Jing Yuan, A. Lommatzsch, Mu Mu, N. Race, F. Hopfgartner, S. Albayrak\",\"doi\":\"10.1145/3077548.3077552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Context-awareness has become a critical factor in improving the predictions of user interest in modern online TV recommendation systems. In addition to individual user preferences, existing context-aware approaches such as tensor factorization incorporate system-level contextual bias to increase predicting accuracy. We analyzed a user interaction dataset from a WebTV platform, and identified that such contextual bias creates a skewed selection of recommended programs which ultimately locks users in a filter bubble. To address this issue, we introduce the Twitter social stream as a source of external context to extend the choice with items related to social media events. We apply two trend indicators, Trend Momentum and SigniScore, to the Twitter histories of relevant programs. The evaluation reveals that Trend Momentum outperforms SigniScore and signalizes 96% of all peaks ahead of time regarding the selected candidate program titles.\",\"PeriodicalId\":314992,\"journal\":{\"name\":\"Proceedings of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video\",\"volume\":\"224 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3077548.3077552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM International Conference on Interactive Experiences for TV and Online Video","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3077548.3077552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在现代在线电视推荐系统中,上下文感知已经成为提高用户兴趣预测的关键因素。除了个人用户偏好外,现有的上下文感知方法(如张量分解)还结合了系统级上下文偏差来提高预测准确性。我们分析了来自WebTV平台的用户交互数据集,并发现这种背景偏见导致了推荐节目的扭曲选择,最终将用户锁定在过滤气泡中。为了解决这个问题,我们引入Twitter社交流作为外部上下文的来源,以扩展与社交媒体事件相关的项目的选择。我们将两个趋势指标trend Momentum和SigniScore应用于相关节目的Twitter历史。评估显示,Trend Momentum优于SigniScore,并且在所选候选程序标题的所有峰值中提前发出96%的信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Countering Contextual Bias in TV Watching Behavior: Introducing Social Trend as External Contextual Factor in TV Recommenders
Context-awareness has become a critical factor in improving the predictions of user interest in modern online TV recommendation systems. In addition to individual user preferences, existing context-aware approaches such as tensor factorization incorporate system-level contextual bias to increase predicting accuracy. We analyzed a user interaction dataset from a WebTV platform, and identified that such contextual bias creates a skewed selection of recommended programs which ultimately locks users in a filter bubble. To address this issue, we introduce the Twitter social stream as a source of external context to extend the choice with items related to social media events. We apply two trend indicators, Trend Momentum and SigniScore, to the Twitter histories of relevant programs. The evaluation reveals that Trend Momentum outperforms SigniScore and signalizes 96% of all peaks ahead of time regarding the selected candidate program titles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信