基于单卡尔曼滤波和隐马尔可夫模型的飞机传感器故障检测

K. Rudin, G. Ducard, R. Siegwart
{"title":"基于单卡尔曼滤波和隐马尔可夫模型的飞机传感器故障检测","authors":"K. Rudin, G. Ducard, R. Siegwart","doi":"10.1109/CCA.2014.6981464","DOIUrl":null,"url":null,"abstract":"This paper presents a new scheme for sensor fault detection and isolation. It uses a single Kalman filter and a Gaussian hidden Markov model for each of the monitored sensors. This combination is able to simultaneously detect single and multiple sensor faults, still guaranteeing optimal system state estimation. This algorithm also can run on systems with limited computational power. The efficiency of the approach is evaluated through simulation of an aircraft to detect airspeed and GPS sensor faults. The results show fast fault detection and low false-alarm rate.","PeriodicalId":205599,"journal":{"name":"2014 IEEE Conference on Control Applications (CCA)","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A sensor fault detection for aircraft using a single Kalman filter and hidden Markov models\",\"authors\":\"K. Rudin, G. Ducard, R. Siegwart\",\"doi\":\"10.1109/CCA.2014.6981464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a new scheme for sensor fault detection and isolation. It uses a single Kalman filter and a Gaussian hidden Markov model for each of the monitored sensors. This combination is able to simultaneously detect single and multiple sensor faults, still guaranteeing optimal system state estimation. This algorithm also can run on systems with limited computational power. The efficiency of the approach is evaluated through simulation of an aircraft to detect airspeed and GPS sensor faults. The results show fast fault detection and low false-alarm rate.\",\"PeriodicalId\":205599,\"journal\":{\"name\":\"2014 IEEE Conference on Control Applications (CCA)\",\"volume\":\"216 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2014.6981464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2014.6981464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

本文提出了一种新的传感器故障检测与隔离方案。它使用一个卡尔曼滤波器和一个高斯隐马尔可夫模型对每个被监测的传感器。这种组合能够同时检测单个和多个传感器故障,仍然保证最优的系统状态估计。该算法也可以在计算能力有限的系统上运行。通过飞机航速和GPS传感器故障检测的仿真,验证了该方法的有效性。结果表明,该方法故障检测速度快,误报率低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A sensor fault detection for aircraft using a single Kalman filter and hidden Markov models
This paper presents a new scheme for sensor fault detection and isolation. It uses a single Kalman filter and a Gaussian hidden Markov model for each of the monitored sensors. This combination is able to simultaneously detect single and multiple sensor faults, still guaranteeing optimal system state estimation. This algorithm also can run on systems with limited computational power. The efficiency of the approach is evaluated through simulation of an aircraft to detect airspeed and GPS sensor faults. The results show fast fault detection and low false-alarm rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信