{"title":"一种柔性并联机器人夹持器的挤压功能","authors":"Metodi Netzev, Alexandre Angleraud, R. Pieters","doi":"10.1109/RoboSoft55895.2023.10122086","DOIUrl":null,"url":null,"abstract":"Grasping parts of inconsistent shapes, sizes and weights securely requires accurate part models and custom gripper fingers. Compliant grippers are a potential solution; however, each design approach requires the solution of unique problems. In this case, the durability and reliability of half lips (at least 1400 cycles) to perform consistently as springs of a specified stiffness (0.5N/mm) and displacement (5mm). Moreover, the challenge of low and small (3mm, 0.01kg bolt or Allen key) objects is addressed through vertical squeeze-in, implemented using an incline, lip and flex limiter as part of a 3D printed TPC spring. The squeeze-in phenomena are verified on large objects through a 30mm, 1.66kg common rail. Experimental results demonstrate the reliability when given a human-specified location for gripping, without the need for jigs or fixtures. Finally, the tested design is assessed for potential fulfillment of 7 of the United Nations sustainable development goals.","PeriodicalId":250981,"journal":{"name":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Squeeze-in Functionality for a Soft Parallel Robot Gripper\",\"authors\":\"Metodi Netzev, Alexandre Angleraud, R. Pieters\",\"doi\":\"10.1109/RoboSoft55895.2023.10122086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Grasping parts of inconsistent shapes, sizes and weights securely requires accurate part models and custom gripper fingers. Compliant grippers are a potential solution; however, each design approach requires the solution of unique problems. In this case, the durability and reliability of half lips (at least 1400 cycles) to perform consistently as springs of a specified stiffness (0.5N/mm) and displacement (5mm). Moreover, the challenge of low and small (3mm, 0.01kg bolt or Allen key) objects is addressed through vertical squeeze-in, implemented using an incline, lip and flex limiter as part of a 3D printed TPC spring. The squeeze-in phenomena are verified on large objects through a 30mm, 1.66kg common rail. Experimental results demonstrate the reliability when given a human-specified location for gripping, without the need for jigs or fixtures. Finally, the tested design is assessed for potential fulfillment of 7 of the United Nations sustainable development goals.\",\"PeriodicalId\":250981,\"journal\":{\"name\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Soft Robotics (RoboSoft)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RoboSoft55895.2023.10122086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Soft Robotics (RoboSoft)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RoboSoft55895.2023.10122086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Squeeze-in Functionality for a Soft Parallel Robot Gripper
Grasping parts of inconsistent shapes, sizes and weights securely requires accurate part models and custom gripper fingers. Compliant grippers are a potential solution; however, each design approach requires the solution of unique problems. In this case, the durability and reliability of half lips (at least 1400 cycles) to perform consistently as springs of a specified stiffness (0.5N/mm) and displacement (5mm). Moreover, the challenge of low and small (3mm, 0.01kg bolt or Allen key) objects is addressed through vertical squeeze-in, implemented using an incline, lip and flex limiter as part of a 3D printed TPC spring. The squeeze-in phenomena are verified on large objects through a 30mm, 1.66kg common rail. Experimental results demonstrate the reliability when given a human-specified location for gripping, without the need for jigs or fixtures. Finally, the tested design is assessed for potential fulfillment of 7 of the United Nations sustainable development goals.