{"title":"一种基于流量特征的轻量级物联网设备识别方案","authors":"Ruizhong Du, Jingze Wang, Shuang Li","doi":"10.1155/2022/8486080","DOIUrl":null,"url":null,"abstract":"Internet of Things (IoT) device identification is a key step in the management of IoT devices. The devices connected to the network must be controlled by the manager. For this purpose, many schemes are proposed to identify IoT devices, especially the schemes working on the gateway. However, almost all researchers do not pay close attention to the cost. Thus, considering the gateway’s limited storage and computational resources, a new lightweight IoT device identification scheme is proposed. First, the DFI (deep/dynamic flow inspection) technology is utilized to efficiently extract flow-related statistical features based on in-depth studies. Then, combined with symmetric uncertainty and correlation coefficient, we proposed a novel filter feature selection method based on NSGA-III to select effective features for IoT device identification. We evaluate our proposed method by using a real smart home IoT data set and three different ML algorithms. The experimental results showed that our proposed method is lightweight and the feature selection algorithm is also effective, only using 6 features can achieve 99.5% accuracy with a 3-minute time interval.","PeriodicalId":167643,"journal":{"name":"Secur. Commun. Networks","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Lightweight Flow Feature-Based IoT Device Identification Scheme\",\"authors\":\"Ruizhong Du, Jingze Wang, Shuang Li\",\"doi\":\"10.1155/2022/8486080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Internet of Things (IoT) device identification is a key step in the management of IoT devices. The devices connected to the network must be controlled by the manager. For this purpose, many schemes are proposed to identify IoT devices, especially the schemes working on the gateway. However, almost all researchers do not pay close attention to the cost. Thus, considering the gateway’s limited storage and computational resources, a new lightweight IoT device identification scheme is proposed. First, the DFI (deep/dynamic flow inspection) technology is utilized to efficiently extract flow-related statistical features based on in-depth studies. Then, combined with symmetric uncertainty and correlation coefficient, we proposed a novel filter feature selection method based on NSGA-III to select effective features for IoT device identification. We evaluate our proposed method by using a real smart home IoT data set and three different ML algorithms. The experimental results showed that our proposed method is lightweight and the feature selection algorithm is also effective, only using 6 features can achieve 99.5% accuracy with a 3-minute time interval.\",\"PeriodicalId\":167643,\"journal\":{\"name\":\"Secur. Commun. Networks\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Secur. Commun. Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2022/8486080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Secur. Commun. Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2022/8486080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Lightweight Flow Feature-Based IoT Device Identification Scheme
Internet of Things (IoT) device identification is a key step in the management of IoT devices. The devices connected to the network must be controlled by the manager. For this purpose, many schemes are proposed to identify IoT devices, especially the schemes working on the gateway. However, almost all researchers do not pay close attention to the cost. Thus, considering the gateway’s limited storage and computational resources, a new lightweight IoT device identification scheme is proposed. First, the DFI (deep/dynamic flow inspection) technology is utilized to efficiently extract flow-related statistical features based on in-depth studies. Then, combined with symmetric uncertainty and correlation coefficient, we proposed a novel filter feature selection method based on NSGA-III to select effective features for IoT device identification. We evaluate our proposed method by using a real smart home IoT data set and three different ML algorithms. The experimental results showed that our proposed method is lightweight and the feature selection algorithm is also effective, only using 6 features can achieve 99.5% accuracy with a 3-minute time interval.