现实世界情感识别的预处理挑战

Karishma Raut, S. Kulkarni
{"title":"现实世界情感识别的预处理挑战","authors":"Karishma Raut, S. Kulkarni","doi":"10.5121/cseij.2022.12606","DOIUrl":null,"url":null,"abstract":"Real world human affect recognition requires immediate attention which is a significant aspect of humancomputer interaction. Audio-visual modalities can make a significant contribution by providing rich contextual information. Preprocessing is an important step in which the relevant information is extracted. It has a crucial impact on prominent feature extraction and further processing. The main aim is to highlight the challenges in preprocessing real world data. The research focuses on experimental testing and comparative analysis for preprocessing using OpenCV, Single Shot MultiBox Detector (SSD), DLib, Multi-Task Cascaded Convolutional Neural Networks (MTCNN), and RetinaFace detectors. The comparative analysis shows that MTCNN and RetinaFace give better performance in real world data. The performance of facial affect recognition using a pre-trained CNN model is analysed with a lab-controlled dataset CK+ and a representative wild dataset AFEW. This comparative analysis demonstrates the impact of preprocessing issues on feature engineering framework in real world affect recognition.","PeriodicalId":361871,"journal":{"name":"Computer Science & Engineering: An International Journal","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preprocessing Challenges for Real World Affect Recognition\",\"authors\":\"Karishma Raut, S. Kulkarni\",\"doi\":\"10.5121/cseij.2022.12606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Real world human affect recognition requires immediate attention which is a significant aspect of humancomputer interaction. Audio-visual modalities can make a significant contribution by providing rich contextual information. Preprocessing is an important step in which the relevant information is extracted. It has a crucial impact on prominent feature extraction and further processing. The main aim is to highlight the challenges in preprocessing real world data. The research focuses on experimental testing and comparative analysis for preprocessing using OpenCV, Single Shot MultiBox Detector (SSD), DLib, Multi-Task Cascaded Convolutional Neural Networks (MTCNN), and RetinaFace detectors. The comparative analysis shows that MTCNN and RetinaFace give better performance in real world data. The performance of facial affect recognition using a pre-trained CNN model is analysed with a lab-controlled dataset CK+ and a representative wild dataset AFEW. This comparative analysis demonstrates the impact of preprocessing issues on feature engineering framework in real world affect recognition.\",\"PeriodicalId\":361871,\"journal\":{\"name\":\"Computer Science & Engineering: An International Journal\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Science & Engineering: An International Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5121/cseij.2022.12606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Science & Engineering: An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/cseij.2022.12606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

现实世界的人类情感识别需要即时关注,这是人机交互的一个重要方面。视听方式可以通过提供丰富的上下文信息作出重大贡献。预处理是提取相关信息的重要步骤。它对突出特征的提取和进一步的处理有着至关重要的影响。主要目的是强调预处理现实世界数据的挑战。研究重点是使用OpenCV、单镜头多盒检测器(SSD)、DLib、多任务级联卷积神经网络(MTCNN)和RetinaFace检测器进行预处理的实验测试和对比分析。对比分析表明,MTCNN和retaface在实际数据中具有更好的性能。使用实验室控制数据集CK+和具有代表性的野生数据集few分析了预训练CNN模型的面部情感识别性能。这一对比分析表明了预处理问题对现实世界中影响识别的特征工程框架的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Preprocessing Challenges for Real World Affect Recognition
Real world human affect recognition requires immediate attention which is a significant aspect of humancomputer interaction. Audio-visual modalities can make a significant contribution by providing rich contextual information. Preprocessing is an important step in which the relevant information is extracted. It has a crucial impact on prominent feature extraction and further processing. The main aim is to highlight the challenges in preprocessing real world data. The research focuses on experimental testing and comparative analysis for preprocessing using OpenCV, Single Shot MultiBox Detector (SSD), DLib, Multi-Task Cascaded Convolutional Neural Networks (MTCNN), and RetinaFace detectors. The comparative analysis shows that MTCNN and RetinaFace give better performance in real world data. The performance of facial affect recognition using a pre-trained CNN model is analysed with a lab-controlled dataset CK+ and a representative wild dataset AFEW. This comparative analysis demonstrates the impact of preprocessing issues on feature engineering framework in real world affect recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信