打印文档中文本行分割与分类模型

Xin Wang, Jun Guo
{"title":"打印文档中文本行分割与分类模型","authors":"Xin Wang, Jun Guo","doi":"10.1145/3457682.3457760","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a new model for text line segmentation and classification, which consists of convolutional and two-layer bi-directional long short-term memory (BiLSTM) networks. Trained on the synthetic text dataset, it performs excellently when predicting the real data. Without labelling every line on the real data, a generalized standard for evaluating the accuracy is proposed. We also propose a simplified IoU loss to improve the execution speed greatly. In the experiments, it achieves 98.1% line segmentation accuracy and 99.5% classification accuracy on the English fiction Pride and Prejudice by Jane Austen, and achieves 98.5% line segmentation accuracy and 99.7% classification accuracy on the The Secret Of Plato's Atlantis by John Arundell, outperforming the traditional methods. Furthermore, for 1024 × 724 input samples, it gets 2.95 FPS speed when using a Tesla K80 GPU. Index Terms—Text line segmentation, Text classification, Synthetic text, BiLSTM, Convolutional network.","PeriodicalId":142045,"journal":{"name":"2021 13th International Conference on Machine Learning and Computing","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Model for Text Line Segmentation and Classification in Printed Documents\",\"authors\":\"Xin Wang, Jun Guo\",\"doi\":\"10.1145/3457682.3457760\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a new model for text line segmentation and classification, which consists of convolutional and two-layer bi-directional long short-term memory (BiLSTM) networks. Trained on the synthetic text dataset, it performs excellently when predicting the real data. Without labelling every line on the real data, a generalized standard for evaluating the accuracy is proposed. We also propose a simplified IoU loss to improve the execution speed greatly. In the experiments, it achieves 98.1% line segmentation accuracy and 99.5% classification accuracy on the English fiction Pride and Prejudice by Jane Austen, and achieves 98.5% line segmentation accuracy and 99.7% classification accuracy on the The Secret Of Plato's Atlantis by John Arundell, outperforming the traditional methods. Furthermore, for 1024 × 724 input samples, it gets 2.95 FPS speed when using a Tesla K80 GPU. Index Terms—Text line segmentation, Text classification, Synthetic text, BiLSTM, Convolutional network.\",\"PeriodicalId\":142045,\"journal\":{\"name\":\"2021 13th International Conference on Machine Learning and Computing\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 13th International Conference on Machine Learning and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3457682.3457760\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 13th International Conference on Machine Learning and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3457682.3457760","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出了一种新的文本行分割和分类模型,该模型由卷积和双层双向长短期记忆(BiLSTM)网络组成。在合成文本数据集上训练,它在预测真实数据时表现出色。在不标注实际数据上的每条线的情况下,提出了一种评估准确性的通用标准。我们还提出了简化的IoU损失,以大大提高执行速度。在实验中,该方法对简·奥斯汀的英文小说《傲慢与偏见》实现了98.1%的线分割准确率和99.5%的分类准确率,对约翰·阿伦德尔的《柏拉图的亚特兰蒂斯的秘密》实现了98.5%的线分割准确率和99.7%的分类准确率,优于传统方法。此外,当使用Tesla K80 GPU时,对于1024 × 724个输入样本,它可以获得2.95 FPS的速度。索引术语:文本线分割,文本分类,合成文本,BiLSTM,卷积网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Model for Text Line Segmentation and Classification in Printed Documents
In this paper, we propose a new model for text line segmentation and classification, which consists of convolutional and two-layer bi-directional long short-term memory (BiLSTM) networks. Trained on the synthetic text dataset, it performs excellently when predicting the real data. Without labelling every line on the real data, a generalized standard for evaluating the accuracy is proposed. We also propose a simplified IoU loss to improve the execution speed greatly. In the experiments, it achieves 98.1% line segmentation accuracy and 99.5% classification accuracy on the English fiction Pride and Prejudice by Jane Austen, and achieves 98.5% line segmentation accuracy and 99.7% classification accuracy on the The Secret Of Plato's Atlantis by John Arundell, outperforming the traditional methods. Furthermore, for 1024 × 724 input samples, it gets 2.95 FPS speed when using a Tesla K80 GPU. Index Terms—Text line segmentation, Text classification, Synthetic text, BiLSTM, Convolutional network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信