一种基于深度学习的交通标志检测新方法

T. Rao, B. J. Vazram, S. Devi, B. Rao
{"title":"一种基于深度学习的交通标志检测新方法","authors":"T. Rao, B. J. Vazram, S. Devi, B. Rao","doi":"10.1109/I-SMAC52330.2021.9640935","DOIUrl":null,"url":null,"abstract":"Nowadays, the demand for automatic driving assistance system is growing rapidly because it is reducing risk on drivers and helping to reduce the road accidents. In existing systems, many technological solutions are there but they are failing to produce promising accuracy. This paper has implemented a deep learning model for recognizing traffic signs that are present in the real world. The dataset that is utilized here is GTSRB which consists of 50,000 images of variable sizes. Due to modern technology and improvement in the automobile industry, numerous problems are encountering due to the huge number of vehicles. As a result, there is an increase in the number of accidents that happen due to the misreading of data by humans. To overcome the problem of misinterpretation, Traffic Sign Recognition is developed. Traffic Sign Recognition system capable of extracting traffic signs in real-time and can recognize the sign associated with the image. This model is being developed by using CNN. Our model producing 99.99% accuracy on training as well as validation data set. Traffic Sign Recognition is also a great contribution to the driver-less car technology that is being developed by Tesla. For a car to be driven without the help of a human, it should be able to detect traffic signs and act accordingly. The proposed model works effectively in different illuminating conditions and directions, where existing systems fail to produce promising results. This model helps to provide high accurate driver assisting system which can help to reduce accidents due traffic signal identification.","PeriodicalId":178783,"journal":{"name":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","volume":"215 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Novel Approach for Detecting Traffic Signs using Deep Learning\",\"authors\":\"T. Rao, B. J. Vazram, S. Devi, B. Rao\",\"doi\":\"10.1109/I-SMAC52330.2021.9640935\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, the demand for automatic driving assistance system is growing rapidly because it is reducing risk on drivers and helping to reduce the road accidents. In existing systems, many technological solutions are there but they are failing to produce promising accuracy. This paper has implemented a deep learning model for recognizing traffic signs that are present in the real world. The dataset that is utilized here is GTSRB which consists of 50,000 images of variable sizes. Due to modern technology and improvement in the automobile industry, numerous problems are encountering due to the huge number of vehicles. As a result, there is an increase in the number of accidents that happen due to the misreading of data by humans. To overcome the problem of misinterpretation, Traffic Sign Recognition is developed. Traffic Sign Recognition system capable of extracting traffic signs in real-time and can recognize the sign associated with the image. This model is being developed by using CNN. Our model producing 99.99% accuracy on training as well as validation data set. Traffic Sign Recognition is also a great contribution to the driver-less car technology that is being developed by Tesla. For a car to be driven without the help of a human, it should be able to detect traffic signs and act accordingly. The proposed model works effectively in different illuminating conditions and directions, where existing systems fail to produce promising results. This model helps to provide high accurate driver assisting system which can help to reduce accidents due traffic signal identification.\",\"PeriodicalId\":178783,\"journal\":{\"name\":\"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"volume\":\"215 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/I-SMAC52330.2021.9640935\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Fifth International Conference on I-SMAC (IoT in Social, Mobile, Analytics and Cloud) (I-SMAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/I-SMAC52330.2021.9640935","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

如今,自动驾驶辅助系统的需求正在迅速增长,因为它可以降低驾驶员的风险,有助于减少道路交通事故。在现有的系统中,有许多技术解决方案,但它们未能产生有希望的准确性。本文实现了一个用于识别现实世界中存在的交通标志的深度学习模型。这里使用的数据集是GTSRB,它由50,000张不同大小的图像组成。由于现代技术和汽车工业的进步,由于车辆数量庞大,遇到了许多问题。因此,由于人类误读数据而发生的事故数量有所增加。为了克服误读问题,开发了交通标志识别技术。交通标志识别系统能够实时提取交通标志,并能识别与图像相关联的标志。这个模型是利用CNN开发的。我们的模型在训练和验证数据集上产生99.99%的准确率。交通标志识别也是对特斯拉正在开发的无人驾驶汽车技术的巨大贡献。对于一辆无人驾驶的汽车来说,它应该能够检测到交通标志并采取相应的行动。在现有系统无法产生令人满意的结果的情况下,所提出的模型在不同的照明条件和方向下有效地工作。该模型有助于提供高精度的驾驶员辅助系统,有助于减少交通信号识别导致的事故。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Approach for Detecting Traffic Signs using Deep Learning
Nowadays, the demand for automatic driving assistance system is growing rapidly because it is reducing risk on drivers and helping to reduce the road accidents. In existing systems, many technological solutions are there but they are failing to produce promising accuracy. This paper has implemented a deep learning model for recognizing traffic signs that are present in the real world. The dataset that is utilized here is GTSRB which consists of 50,000 images of variable sizes. Due to modern technology and improvement in the automobile industry, numerous problems are encountering due to the huge number of vehicles. As a result, there is an increase in the number of accidents that happen due to the misreading of data by humans. To overcome the problem of misinterpretation, Traffic Sign Recognition is developed. Traffic Sign Recognition system capable of extracting traffic signs in real-time and can recognize the sign associated with the image. This model is being developed by using CNN. Our model producing 99.99% accuracy on training as well as validation data set. Traffic Sign Recognition is also a great contribution to the driver-less car technology that is being developed by Tesla. For a car to be driven without the help of a human, it should be able to detect traffic signs and act accordingly. The proposed model works effectively in different illuminating conditions and directions, where existing systems fail to produce promising results. This model helps to provide high accurate driver assisting system which can help to reduce accidents due traffic signal identification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信