基于多任务卷积神经网络和LBP特征的嵌入式人脸识别系统

Mengyue Zhang, Weihan Liao, Jianlian Zhang, Huisheng Gao, Fanyi Wang, Bin Lin
{"title":"基于多任务卷积神经网络和LBP特征的嵌入式人脸识别系统","authors":"Mengyue Zhang, Weihan Liao, Jianlian Zhang, Huisheng Gao, Fanyi Wang, Bin Lin","doi":"10.1109/ICIASE45644.2019.9074104","DOIUrl":null,"url":null,"abstract":"Based on neural network and local binary pattern algorithm, this paper builds a lightweight artificial face recognition system on chip Firefly-RK3399, with high speed, strong robustness and high recognition accuracy. Our embedded artificial intelligent face recognition system mainly consists of face detection, feature extraction and recognition. Multi-task convolutional neural network (MTCNN) under the CaffeOnACL framework is utilized for face detection, and the local binary pattern (LBP) is applied as face recognition algorithm. Experiments illustrate that our artificial intelligent embedded face recognition system has high speed and accuracy, which is easy-carrying and of high commercial value as well.","PeriodicalId":206741,"journal":{"name":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Embedded Face Recognition System Based on Multi-task Convolutional Neural Network and LBP Features\",\"authors\":\"Mengyue Zhang, Weihan Liao, Jianlian Zhang, Huisheng Gao, Fanyi Wang, Bin Lin\",\"doi\":\"10.1109/ICIASE45644.2019.9074104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on neural network and local binary pattern algorithm, this paper builds a lightweight artificial face recognition system on chip Firefly-RK3399, with high speed, strong robustness and high recognition accuracy. Our embedded artificial intelligent face recognition system mainly consists of face detection, feature extraction and recognition. Multi-task convolutional neural network (MTCNN) under the CaffeOnACL framework is utilized for face detection, and the local binary pattern (LBP) is applied as face recognition algorithm. Experiments illustrate that our artificial intelligent embedded face recognition system has high speed and accuracy, which is easy-carrying and of high commercial value as well.\",\"PeriodicalId\":206741,\"journal\":{\"name\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIASE45644.2019.9074104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference of Intelligent Applied Systems on Engineering (ICIASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIASE45644.2019.9074104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文基于神经网络和局部二值模式算法,在萤火虫- rk3399芯片上构建了一个轻量级的、速度快、鲁棒性强、识别精度高的人工人脸识别系统。我们的嵌入式人工智能人脸识别系统主要由人脸检测、特征提取和识别三个部分组成。利用CaffeOnACL框架下的多任务卷积神经网络(MTCNN)进行人脸检测,并采用局部二值模式(LBP)作为人脸识别算法。实验表明,该人工智能嵌入式人脸识别系统具有速度快、准确率高、携带方便、商业价值高的特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Embedded Face Recognition System Based on Multi-task Convolutional Neural Network and LBP Features
Based on neural network and local binary pattern algorithm, this paper builds a lightweight artificial face recognition system on chip Firefly-RK3399, with high speed, strong robustness and high recognition accuracy. Our embedded artificial intelligent face recognition system mainly consists of face detection, feature extraction and recognition. Multi-task convolutional neural network (MTCNN) under the CaffeOnACL framework is utilized for face detection, and the local binary pattern (LBP) is applied as face recognition algorithm. Experiments illustrate that our artificial intelligent embedded face recognition system has high speed and accuracy, which is easy-carrying and of high commercial value as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信