{"title":"稀疏模型综合的数据清理:当符号-数值计算遇到纠错码时","authors":"E. Kaltofen","doi":"10.1145/2631948.2631949","DOIUrl":null,"url":null,"abstract":"The discipline of symbolic computation contributes to mathematical model synthesis in several ways. One is the pioneering creation of interpolation algorithms that can account for sparsity in the resulting multi-dimensional models, for example, by Zippel [12], Ben-Or and Tiwari [1], and in their recent numerical counterparts by Giesbrecht-Labahn-Lee [5] and Kaltofen-Yang-Zhi [9].","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cleaning-up data for sparse model synthesis: when symbolic-numeric computation meets error-correcting codes\",\"authors\":\"E. Kaltofen\",\"doi\":\"10.1145/2631948.2631949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discipline of symbolic computation contributes to mathematical model synthesis in several ways. One is the pioneering creation of interpolation algorithms that can account for sparsity in the resulting multi-dimensional models, for example, by Zippel [12], Ben-Or and Tiwari [1], and in their recent numerical counterparts by Giesbrecht-Labahn-Lee [5] and Kaltofen-Yang-Zhi [9].\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2631948.2631949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cleaning-up data for sparse model synthesis: when symbolic-numeric computation meets error-correcting codes
The discipline of symbolic computation contributes to mathematical model synthesis in several ways. One is the pioneering creation of interpolation algorithms that can account for sparsity in the resulting multi-dimensional models, for example, by Zippel [12], Ben-Or and Tiwari [1], and in their recent numerical counterparts by Giesbrecht-Labahn-Lee [5] and Kaltofen-Yang-Zhi [9].