稀疏模型综合的数据清理:当符号-数值计算遇到纠错码时

E. Kaltofen
{"title":"稀疏模型综合的数据清理:当符号-数值计算遇到纠错码时","authors":"E. Kaltofen","doi":"10.1145/2631948.2631949","DOIUrl":null,"url":null,"abstract":"The discipline of symbolic computation contributes to mathematical model synthesis in several ways. One is the pioneering creation of interpolation algorithms that can account for sparsity in the resulting multi-dimensional models, for example, by Zippel [12], Ben-Or and Tiwari [1], and in their recent numerical counterparts by Giesbrecht-Labahn-Lee [5] and Kaltofen-Yang-Zhi [9].","PeriodicalId":308716,"journal":{"name":"Symbolic-Numeric Computation","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Cleaning-up data for sparse model synthesis: when symbolic-numeric computation meets error-correcting codes\",\"authors\":\"E. Kaltofen\",\"doi\":\"10.1145/2631948.2631949\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The discipline of symbolic computation contributes to mathematical model synthesis in several ways. One is the pioneering creation of interpolation algorithms that can account for sparsity in the resulting multi-dimensional models, for example, by Zippel [12], Ben-Or and Tiwari [1], and in their recent numerical counterparts by Giesbrecht-Labahn-Lee [5] and Kaltofen-Yang-Zhi [9].\",\"PeriodicalId\":308716,\"journal\":{\"name\":\"Symbolic-Numeric Computation\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Symbolic-Numeric Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2631948.2631949\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Symbolic-Numeric Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2631948.2631949","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

符号计算学科在几个方面有助于数学模型的综合。一种是开创性的插值算法,可以解释由此产生的多维模型中的稀疏性,例如Zippel [12], Ben-Or和Tiwari[1],以及最近Giesbrecht-Labahn-Lee[5]和Kaltofen-Yang-Zhi[9]的数值对应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cleaning-up data for sparse model synthesis: when symbolic-numeric computation meets error-correcting codes
The discipline of symbolic computation contributes to mathematical model synthesis in several ways. One is the pioneering creation of interpolation algorithms that can account for sparsity in the resulting multi-dimensional models, for example, by Zippel [12], Ben-Or and Tiwari [1], and in their recent numerical counterparts by Giesbrecht-Labahn-Lee [5] and Kaltofen-Yang-Zhi [9].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信