Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Weichen Liu
{"title":"正在进行的工作:对早期培训统计的期望是什么?基于硬件感知的神经结构搜索研究","authors":"Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Weichen Liu","doi":"10.1109/CODES-ISSS55005.2022.00007","DOIUrl":null,"url":null,"abstract":"Neural architecture search (NAS) is an emerging paradigm to automate the design of top-performing deep neural networks (DNNs). Specifically, the increasing success of NAS is attributed to the reliable performance estimation of different architectures. Despite significant progress to date, previous relevant methods suffer from prohibitive computational overheads. To avoid this, we propose an effective yet computationally efficient proxy, namely Trained Batchwise Estimation (TBE), to reliably estimate the performance of different architectures using the early batchwise training statistics. We then integrate TBE into the hardware-aware NAS scenario to search for hardware-efficient architecture solutions. Experimental results clearly show the superiority of TBE over previous relevant state-of-the-art approaches.","PeriodicalId":129167,"journal":{"name":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Work-in-Progress: What to Expect of Early Training Statistics? An Investigation on Hardware-Aware Neural Architecture Search\",\"authors\":\"Xiangzhong Luo, Di Liu, Hao Kong, Shuo Huai, Hui Chen, Weichen Liu\",\"doi\":\"10.1109/CODES-ISSS55005.2022.00007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural architecture search (NAS) is an emerging paradigm to automate the design of top-performing deep neural networks (DNNs). Specifically, the increasing success of NAS is attributed to the reliable performance estimation of different architectures. Despite significant progress to date, previous relevant methods suffer from prohibitive computational overheads. To avoid this, we propose an effective yet computationally efficient proxy, namely Trained Batchwise Estimation (TBE), to reliably estimate the performance of different architectures using the early batchwise training statistics. We then integrate TBE into the hardware-aware NAS scenario to search for hardware-efficient architecture solutions. Experimental results clearly show the superiority of TBE over previous relevant state-of-the-art approaches.\",\"PeriodicalId\":129167,\"journal\":{\"name\":\"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CODES-ISSS55005.2022.00007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Hardware/Software Codesign and System Synthesis (CODES+ISSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CODES-ISSS55005.2022.00007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Work-in-Progress: What to Expect of Early Training Statistics? An Investigation on Hardware-Aware Neural Architecture Search
Neural architecture search (NAS) is an emerging paradigm to automate the design of top-performing deep neural networks (DNNs). Specifically, the increasing success of NAS is attributed to the reliable performance estimation of different architectures. Despite significant progress to date, previous relevant methods suffer from prohibitive computational overheads. To avoid this, we propose an effective yet computationally efficient proxy, namely Trained Batchwise Estimation (TBE), to reliably estimate the performance of different architectures using the early batchwise training statistics. We then integrate TBE into the hardware-aware NAS scenario to search for hardware-efficient architecture solutions. Experimental results clearly show the superiority of TBE over previous relevant state-of-the-art approaches.