使用早期生命周期数据进行故障预测

Yue Jiang, B. Cukic, T. Menzies
{"title":"使用早期生命周期数据进行故障预测","authors":"Yue Jiang, B. Cukic, T. Menzies","doi":"10.1109/ISSRE.2007.24","DOIUrl":null,"url":null,"abstract":"The prediction of fault-prone modules in a software project has been the topic of many studies. In this paper, we investigate whether metrics available early in the development lifecycle can be used to identify fault-prone software modules. More precisely, we build predictive models using the metrics that characterize textual requirements. We compare the performance of requirements-based models against the performance of code-based models and models that combine requirement and code metrics. Using a range of modeling techniques and the data from three NASA projects, our study indicates that the early lifecycle metrics can play an important role in project management, either by pointing to the need for increased quality monitoring during the development or by using the models to assign verification and validation activities.","PeriodicalId":193805,"journal":{"name":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"135","resultStr":"{\"title\":\"Fault Prediction using Early Lifecycle Data\",\"authors\":\"Yue Jiang, B. Cukic, T. Menzies\",\"doi\":\"10.1109/ISSRE.2007.24\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prediction of fault-prone modules in a software project has been the topic of many studies. In this paper, we investigate whether metrics available early in the development lifecycle can be used to identify fault-prone software modules. More precisely, we build predictive models using the metrics that characterize textual requirements. We compare the performance of requirements-based models against the performance of code-based models and models that combine requirement and code metrics. Using a range of modeling techniques and the data from three NASA projects, our study indicates that the early lifecycle metrics can play an important role in project management, either by pointing to the need for increased quality monitoring during the development or by using the models to assign verification and validation activities.\",\"PeriodicalId\":193805,\"journal\":{\"name\":\"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"135\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSRE.2007.24\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 18th IEEE International Symposium on Software Reliability (ISSRE '07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSRE.2007.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 135

摘要

软件项目中易故障模块的预测一直是许多研究的主题。在本文中,我们研究了在开发生命周期早期可用的度量是否可以用于识别容易出错的软件模块。更准确地说,我们使用表征文本需求的度量来构建预测模型。我们将基于需求的模型的性能与基于代码的模型的性能以及结合了需求和代码度量的模型的性能进行比较。使用一系列建模技术和来自三个NASA项目的数据,我们的研究表明,早期生命周期度量可以在项目管理中发挥重要作用,无论是通过指出在开发过程中增加质量监控的需要,还是通过使用模型来分配验证和确认活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fault Prediction using Early Lifecycle Data
The prediction of fault-prone modules in a software project has been the topic of many studies. In this paper, we investigate whether metrics available early in the development lifecycle can be used to identify fault-prone software modules. More precisely, we build predictive models using the metrics that characterize textual requirements. We compare the performance of requirements-based models against the performance of code-based models and models that combine requirement and code metrics. Using a range of modeling techniques and the data from three NASA projects, our study indicates that the early lifecycle metrics can play an important role in project management, either by pointing to the need for increased quality monitoring during the development or by using the models to assign verification and validation activities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信