线性铣削模型的稳定化

R. I. Shevchenko, Y. Dolgii
{"title":"线性铣削模型的稳定化","authors":"R. I. Shevchenko, Y. Dolgii","doi":"10.1109/STAB.2018.8408401","DOIUrl":null,"url":null,"abstract":"Within the set of pulse controls we solve the optimal stabilization problem for linear milling model described by the second-order retarded differential equation with periodic coeffi-cients. Canonical decomposition for elements of the function state space is used to replace the initial infinite-dimensional problem by the stabilization problem for a system of ordinary differential equations with periodic coefficients. The latter problem is reduced to the discrete periodic stabilization problem, which is solved by means of a special algorithm.","PeriodicalId":395462,"journal":{"name":"2018 14th International Conference \"Stability and Oscillations of Nonlinear Control Systems\" (Pyatnitskiy's Conference) (STAB)","volume":"214 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Stabilization of the linear milling model\",\"authors\":\"R. I. Shevchenko, Y. Dolgii\",\"doi\":\"10.1109/STAB.2018.8408401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Within the set of pulse controls we solve the optimal stabilization problem for linear milling model described by the second-order retarded differential equation with periodic coeffi-cients. Canonical decomposition for elements of the function state space is used to replace the initial infinite-dimensional problem by the stabilization problem for a system of ordinary differential equations with periodic coefficients. The latter problem is reduced to the discrete periodic stabilization problem, which is solved by means of a special algorithm.\",\"PeriodicalId\":395462,\"journal\":{\"name\":\"2018 14th International Conference \\\"Stability and Oscillations of Nonlinear Control Systems\\\" (Pyatnitskiy's Conference) (STAB)\",\"volume\":\"214 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 14th International Conference \\\"Stability and Oscillations of Nonlinear Control Systems\\\" (Pyatnitskiy's Conference) (STAB)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/STAB.2018.8408401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 14th International Conference \"Stability and Oscillations of Nonlinear Control Systems\" (Pyatnitskiy's Conference) (STAB)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STAB.2018.8408401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在脉冲控制的范围内,求解了用二阶周期时滞微分方程描述的线性铣削模型的最优镇定问题。利用函数状态空间元素的正则分解,用周期系数常微分方程系统的镇定问题来代替初始的无限维问题。后一个问题被简化为离散周期镇定问题,并通过一种特殊的算法来求解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stabilization of the linear milling model
Within the set of pulse controls we solve the optimal stabilization problem for linear milling model described by the second-order retarded differential equation with periodic coeffi-cients. Canonical decomposition for elements of the function state space is used to replace the initial infinite-dimensional problem by the stabilization problem for a system of ordinary differential equations with periodic coefficients. The latter problem is reduced to the discrete periodic stabilization problem, which is solved by means of a special algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信