使用多键FHE和CP-ABE的基于策略的非交互式计算外包

Michael Clear, C. McGoldrick
{"title":"使用多键FHE和CP-ABE的基于策略的非交互式计算外包","authors":"Michael Clear, C. McGoldrick","doi":"10.5220/0004534304440452","DOIUrl":null,"url":null,"abstract":"We consider the problem of outsourced computation that operates on encrypted inputs supplied by multiple independent parties. To facilitate fine-grained access control, it would be desirable if each party could encrypt her input under an appropriate access policy. Moreover, a party should only be authorized to decrypt the result of a computation performed on a set of encrypted inputs if his credentials satisfy the composition of all input policies. There has been limited success so far achieving homomorphic encryption in the functional setting; that is, for primitives such as Ciphertext-Policy Attribute Based Encryption (CP-ABE) and Identity Based Encryption (IBE). We introduce a new primitive that captures homomorphic encryption with support for access policies and policy composition. We then present a generic construction using CP-ABE and multikey Fully-Homomorphic encryption (FHE). Furthermore, we show that a CP-ABE scheme that is homomorphic for circuits of polylogarithmic depth in some parameter m implies a CP-ABE scheme that is homomorphic for circuits of arity m and unbounded depth.","PeriodicalId":174026,"journal":{"name":"2013 International Conference on Security and Cryptography (SECRYPT)","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Policy-based non-interactive outsourcing of computation using multikey FHE and CP-ABE\",\"authors\":\"Michael Clear, C. McGoldrick\",\"doi\":\"10.5220/0004534304440452\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of outsourced computation that operates on encrypted inputs supplied by multiple independent parties. To facilitate fine-grained access control, it would be desirable if each party could encrypt her input under an appropriate access policy. Moreover, a party should only be authorized to decrypt the result of a computation performed on a set of encrypted inputs if his credentials satisfy the composition of all input policies. There has been limited success so far achieving homomorphic encryption in the functional setting; that is, for primitives such as Ciphertext-Policy Attribute Based Encryption (CP-ABE) and Identity Based Encryption (IBE). We introduce a new primitive that captures homomorphic encryption with support for access policies and policy composition. We then present a generic construction using CP-ABE and multikey Fully-Homomorphic encryption (FHE). Furthermore, we show that a CP-ABE scheme that is homomorphic for circuits of polylogarithmic depth in some parameter m implies a CP-ABE scheme that is homomorphic for circuits of arity m and unbounded depth.\",\"PeriodicalId\":174026,\"journal\":{\"name\":\"2013 International Conference on Security and Cryptography (SECRYPT)\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Security and Cryptography (SECRYPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0004534304440452\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Security and Cryptography (SECRYPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0004534304440452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

我们考虑外包计算的问题,该问题对由多个独立方提供的加密输入进行操作。为了促进细粒度的访问控制,希望每一方都能在适当的访问策略下对其输入进行加密。此外,只有当一方的凭据满足所有输入策略的组合时,才应该授权其解密对一组加密输入执行的计算结果。到目前为止,在功能设置中实现同态加密的成功有限;也就是说,对于诸如密文-策略基于属性的加密(CP-ABE)和基于身份的加密(IBE)之类的原语。我们引入了一个新的原语,用于捕获支持访问策略和策略组合的同态加密。然后,我们提出了一个使用CP-ABE和多密钥全同态加密(FHE)的通用结构。进一步地,我们证明了对于深度为多对数的电路在某参数m上是同态的CP-ABE格式意味着对于深度为无界的整数m的电路也是同态的CP-ABE格式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Policy-based non-interactive outsourcing of computation using multikey FHE and CP-ABE
We consider the problem of outsourced computation that operates on encrypted inputs supplied by multiple independent parties. To facilitate fine-grained access control, it would be desirable if each party could encrypt her input under an appropriate access policy. Moreover, a party should only be authorized to decrypt the result of a computation performed on a set of encrypted inputs if his credentials satisfy the composition of all input policies. There has been limited success so far achieving homomorphic encryption in the functional setting; that is, for primitives such as Ciphertext-Policy Attribute Based Encryption (CP-ABE) and Identity Based Encryption (IBE). We introduce a new primitive that captures homomorphic encryption with support for access policies and policy composition. We then present a generic construction using CP-ABE and multikey Fully-Homomorphic encryption (FHE). Furthermore, we show that a CP-ABE scheme that is homomorphic for circuits of polylogarithmic depth in some parameter m implies a CP-ABE scheme that is homomorphic for circuits of arity m and unbounded depth.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信