针对声事件检测的多帧特征提取

Liqun Peng, Deshun Yang, Xiaoou Chen
{"title":"针对声事件检测的多帧特征提取","authors":"Liqun Peng, Deshun Yang, Xiaoou Chen","doi":"10.1109/APSIPA.2014.7041574","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of detection and recognition of impulsive sounds in surveillance system, such as door slams, footsteps, glass breaks, gunshots and human screams. We build an acoustic event dataset of about 1k sound clips and a ground truth dataset of a surveillance system. We investigate the influence of different frame size in audio feature extraction when classify acoustic events and our result show that the classification accuracy differs from different audio frame sizes. Based on this result, we propose an approach to integrate multi frame size features to generate a new feature set, which can achieve better performance. We build an abnormal acoustic event detection system for surveillance using this feature and adopt a smoothing post process. The experiments show the effectiveness of our proposed approach.","PeriodicalId":231382,"journal":{"name":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Multi frame size feature extraction for acoustic event detection\",\"authors\":\"Liqun Peng, Deshun Yang, Xiaoou Chen\",\"doi\":\"10.1109/APSIPA.2014.7041574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of detection and recognition of impulsive sounds in surveillance system, such as door slams, footsteps, glass breaks, gunshots and human screams. We build an acoustic event dataset of about 1k sound clips and a ground truth dataset of a surveillance system. We investigate the influence of different frame size in audio feature extraction when classify acoustic events and our result show that the classification accuracy differs from different audio frame sizes. Based on this result, we propose an approach to integrate multi frame size features to generate a new feature set, which can achieve better performance. We build an abnormal acoustic event detection system for surveillance using this feature and adopt a smoothing post process. The experiments show the effectiveness of our proposed approach.\",\"PeriodicalId\":231382,\"journal\":{\"name\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/APSIPA.2014.7041574\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal and Information Processing Association Annual Summit and Conference (APSIPA), 2014 Asia-Pacific","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APSIPA.2014.7041574","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了在监控系统中对诸如关门声、脚步声、玻璃破碎声、枪声和人的尖叫声等脉冲声音的检测和识别问题。我们建立了一个大约1k个声音片段的声学事件数据集和一个监视系统的地面真相数据集。研究了不同帧长的音频特征提取对声学事件分类的影响,结果表明不同帧长的音频特征提取的分类精度不同。在此基础上,我们提出了一种整合多帧大小特征来生成新的特征集的方法,可以获得更好的性能。我们利用这一特征构建了一个用于监视的异常声事件检测系统,并采用平滑后置处理。实验证明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi frame size feature extraction for acoustic event detection
This paper addresses the problem of detection and recognition of impulsive sounds in surveillance system, such as door slams, footsteps, glass breaks, gunshots and human screams. We build an acoustic event dataset of about 1k sound clips and a ground truth dataset of a surveillance system. We investigate the influence of different frame size in audio feature extraction when classify acoustic events and our result show that the classification accuracy differs from different audio frame sizes. Based on this result, we propose an approach to integrate multi frame size features to generate a new feature set, which can achieve better performance. We build an abnormal acoustic event detection system for surveillance using this feature and adopt a smoothing post process. The experiments show the effectiveness of our proposed approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信