无监督少镜头学习的双情景抽样和动量一致性正则化

Jiaxin Chen, Yanxu Hu, Meng Shen, A. J. Ma
{"title":"无监督少镜头学习的双情景抽样和动量一致性正则化","authors":"Jiaxin Chen, Yanxu Hu, Meng Shen, A. J. Ma","doi":"10.1109/ICME55011.2023.00491","DOIUrl":null,"url":null,"abstract":"Unsupervised Few-shot Learning (UFSL) is a practical approach to adapting knowledge learned from unlabeled data of base classes to novel classes with limited labeled data. Nevertheless, most existing UFSL methods may not learn generalizable features in latter training epochs due to the simplicity of meta-learning tasks constructed by data augmentation. To address this issue, we propose two novel components, namely Dual Episodic Sampling (DES) and Momentum Consistency Regularization (MCR) for UFSL. In the DES, two types of sampling strategies are used to construct harder training tasks with multiple augmentations to generate each pseudo-class of increased diversity. The MCR constrains the consistency of the backbone encoder with its momentum counterpart to learn better generalized features for novel classes. Experimental results on four datasets verify the superiority of our method for unsupervised few-shot image classification.","PeriodicalId":321830,"journal":{"name":"2023 IEEE International Conference on Multimedia and Expo (ICME)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dual Episodic Sampling and Momentum Consistency Regularization for Unsupervised Few-shot Learning\",\"authors\":\"Jiaxin Chen, Yanxu Hu, Meng Shen, A. J. Ma\",\"doi\":\"10.1109/ICME55011.2023.00491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Unsupervised Few-shot Learning (UFSL) is a practical approach to adapting knowledge learned from unlabeled data of base classes to novel classes with limited labeled data. Nevertheless, most existing UFSL methods may not learn generalizable features in latter training epochs due to the simplicity of meta-learning tasks constructed by data augmentation. To address this issue, we propose two novel components, namely Dual Episodic Sampling (DES) and Momentum Consistency Regularization (MCR) for UFSL. In the DES, two types of sampling strategies are used to construct harder training tasks with multiple augmentations to generate each pseudo-class of increased diversity. The MCR constrains the consistency of the backbone encoder with its momentum counterpart to learn better generalized features for novel classes. Experimental results on four datasets verify the superiority of our method for unsupervised few-shot image classification.\",\"PeriodicalId\":321830,\"journal\":{\"name\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE International Conference on Multimedia and Expo (ICME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICME55011.2023.00491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME55011.2023.00491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

无监督少次学习(UFSL)是一种将从基类的未标记数据中学习到的知识适应于具有有限标记数据的新类的实用方法。然而,由于数据增强构建的元学习任务过于简单,大多数现有的UFSL方法在后期的训练阶段可能无法学习到可推广的特征。为了解决这个问题,我们提出了两个新的组件,即双情景采样(DES)和动量一致性正则化(MCR)。在DES中,使用两种类型的采样策略来构建具有多个增强的更难的训练任务,以生成每个增加多样性的伪类。MCR约束了骨干编码器与其动量对应编码器的一致性,以更好地学习新类的广义特征。在4个数据集上的实验结果验证了该方法在无监督少镜头图像分类中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dual Episodic Sampling and Momentum Consistency Regularization for Unsupervised Few-shot Learning
Unsupervised Few-shot Learning (UFSL) is a practical approach to adapting knowledge learned from unlabeled data of base classes to novel classes with limited labeled data. Nevertheless, most existing UFSL methods may not learn generalizable features in latter training epochs due to the simplicity of meta-learning tasks constructed by data augmentation. To address this issue, we propose two novel components, namely Dual Episodic Sampling (DES) and Momentum Consistency Regularization (MCR) for UFSL. In the DES, two types of sampling strategies are used to construct harder training tasks with multiple augmentations to generate each pseudo-class of increased diversity. The MCR constrains the consistency of the backbone encoder with its momentum counterpart to learn better generalized features for novel classes. Experimental results on four datasets verify the superiority of our method for unsupervised few-shot image classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信